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Abstract. Modern imaging methods rely strongly on Bayesian inference techniques to solve challenging imag-5
ing problems. Currently, the predominant Bayesian computation approach is convex optimisation,6
which scales very efficiently to high dimensional image models and delivers accurate point estima-7
tion results. However, in order to perform more complex analyses, for example image uncertainty8
quantification or model selection, it is necessary to use more computationally intensive Bayesian9
computation techniques such as Markov chain Monte Carlo methods. This paper presents a new10
and highly efficient Markov chain Monte Carlo methodology to perform Bayesian computation for11
high dimensional models that are log-concave and non-smooth, a class of models that is central in12
imaging sciences. The methodology is based on a regularised unadjusted Langevin algorithm that13
exploits tools from convex analysis, namely Moreau-Yoshida envelopes and proximal operators, to14
construct Markov chains with favourable convergence properties. In addition to scaling efficiently15
to high dimensions, the method is straightforward to apply to models that are currently solved by16
using proximal optimisation algorithms. We provide a detailed theoretical analysis of the proposed17
methodology, including asymptotic and non-asymptotic convergence results with easily verifiable18
conditions, and explicit bounds on the convergence rates. The proposed methodology is demon-19
strated with four experiments related to image deconvolution and tomographic reconstruction with20
total-variation and `1 priors, where we conduct a range of challenging Bayesian analyses related to21
uncertainty quantification, hypothesis testing, and model selection in the absence of ground truth.22
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1. Introduction. Image estimation problems are ubiquitous in science and engineering.26

For example, problems related to image denoising [24], deconvolution [5], compressive sens-27

ing reconstruction [12], super-resolution [30], tomographic reconstruction [27], inpainting [8],28

source separation [48], fusion [21], and phase retrieval [6]. The development of new theory,29

methodology, and algorithms for imaging problems is a focus of significant research efforts.30

Particularly, convex imaging problems have received a lot of attention lately, leading to major31

developments in this area.32

Most recent works in the imaging literature adopt formal mathematical approaches to33

analyse problems, derive solutions, and study the underpinning algorithms. There are several34

mathematical frameworks available to solve imaging problems [22]. In particular, many mod-35

ern methods are formulated in the Bayesian statistical framework, which relies on statistical36

models to represent the data observation process and the prior knowledge available, and then37

derives solutions by using inference techniques rooted in Bayesian decision theory [22].38
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2 A. DURMUS, É. MOULINES AND M. PEREYRA

There are currently two main approaches in Bayesian imaging methodology. The predom-39

inant approach is to use a convex formulation of the estimation problem and postulate a prior40

distribution that is log-concave. This leads to a posterior distribution that is also log-concave,41

and where maximum-a-posteriori (MAP) estimation can be computed efficiently by using high42

dimensional convex optimisation algorithms [17]. In addition to scaling well to large settings,43

convex optimisation algorithms have two additional advantages that are important for prac-44

tical Bayesian computation: they are well understood theoretically and their conditions for45

convergence are clear and simple to check; and the main algorithms are general and can be46

applied similarly to wide range of problems. However, convex optimisation on its own cannot47

deliver basic aspects of the Bayesian paradigm and struggles to support the complex statistical48

analyses that are inherent to modern scientific reasoning and decision-making.49

The second main approach in Bayesian imaging methodology is based on stochastic sim-50

ulation algorithms, namely Markov chain Monte Carlo (MCMC) algorithms. Such methods,51

which were already actively studied over two decades ago, have regained significant attention52

lately because of their capacity to address very challenging imaging problems that are be-53

yond the scope of optimisation-based techniques [39]. Additionally to complex models such54

as hierarchical or empirical Bayesian models, MCMC methods also enable advanced analyses55

such as hypotheses test and model selection. Unfortunately, despite great progress in high56

dimensional MCMC methodology, solving imaging problems by stochastic simulation remains57

too expensive for applications involving moderate or large datasets. Another drawback of58

existing MCMC methods is that the conditions for their convergence are often significantly59

more difficult to check than those of optimisation schemes. As a result, most practitioners60

only assess convergence empirically. It is worth mentioning that some of these limitations can61

be partially mitigated by resorting to variational Bayes or message passing approximations,62

which are generally significantly more computationally efficient than stochastic simulation.63

Unfortunately, such approximations are available only for specific models, and we currently64

have little theory to analyse the approximation error involved. Similarly, it is generally dif-65

ficult to provide convergence guarantees for the related algorithms, which often suffer from66

local convergence issues. Observe that this is in sharp contrast with the convex optimisation67

approach, which despite its clear limitations, is general and well understood theoretically.68

In summary, convex optimisation and MCMC methods have complementary strengths and69

weaknesses related to their computational efficiency, theoretical underpinning, and the infer-70

ences they can support. As a result, it is increasingly acknowledged that the two methodolo-71

gies should be used together. In this view, the future imaging methodological toolbox should72

provide a flexible framework where it is possible to perform very efficiently a first analysis73

of a full dataset by using convex optimisation algorithms, followed by in-depth analyses by74

MCMC simulation for specific data (e.g., particular data that will be used as evidence to75

support a hypothesis or a decision). Also, in this framework practitioners should be able to76

use MCMC algorithms to perform preliminary analyses, which then set the basis for a full77

scale analysis with convex optimisation techniques. These could be, for example, exploratory78

analyses with selected data aimed at calibrating the model or performing Bayesian model79

selection, and benchmarking analyses to assess efficient approximations (e.g., optimisation-80

based approximate confidence intervals [35]). Unfortunately, it is currently difficult to use81

optimisation and MCMC methodologies in this complementary manner because optimisation82
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methods use predominantly non-conjugate priors that are not smooth, such as priors involving83

the `1 or the total-variation noms, whereas MCMC methods are mainly restricted to models84

with priors that are either conjugate to the likelihood function, or that are smooth with Lip-85

chitz gradients (the latter enables efficient high dimensional MCMC algorithms such as the86

Metropolis-adjusted Langevin algorithm or Hamiltonian Monte Carlo [39]).87

Proximal MCMC algorithms, proposed recently in [36], are an important first step towards88

bridging this methodological gap between convex optimisation and stochastic simulation. Un-89

like conventional high dimensional MCMC algorithms that use gradient mappings and require90

Lipchitz differentiability, proximal MCMC algorithms draw their efficiency from convex anal-91

ysis, namely proximal mappings and Moreau-Yoshida envelopes. This allows MCMC-based92

Bayesian computation for precisely the type of models that are solved by convex optimisation93

(i.e., high dimensional models that are log-concave but not smooth), which in turn enables94

advanced Bayesian analyses for these models (e.g., see [35; 2] for applications of proximal95

MCMC to Bayesian uncertainty quantification and sparse regression). However, the proxi-96

mal MCMC algorithms presented in [36] have three shortcomings that limit their impact in97

imaging sciences, and which this paper seeks to address. First, the conditions that guarantee98

the convergence of the algorithms are difficult to check in practice. Second, the algorithms99

assume that it is possible to compute the proximal mapping of the log-posterior distribution;100

in practice however this mapping is often approximated by using a forward-backward splitting101

scheme. Third, the algorithms rely on a Metropolis-Hastings correction step to remove the102

asymptotic bias introduced by the approximations and to guarantee that the Markov chains103

target the desired posterior distribution. Unfortunately, this correction step can degrade sig-104

nificantly the efficiency of the algorithms (i.e., the asymptotic bias is removed at the expense105

of a potentially significant increase in estimation variance and some additional bias from the106

Markov chain’s transient or burn-in regime).107

This paper presents a new and significantly better proximal MCMC methodology that ad-108

dress all the issues of the original proximal algorithms discussed above. This new methodology109

is highly computationally efficient and general, in that it can be applied straightforwardly to110

most models currently addressed by convex optimisation (in particular, to any model that can111

be solved by forward-backward splitting). Moreover, we provide simple theoretical conditions112

to guarantee the convergence of the Markov chains, as well as bounds on its convergence rate.113

To conclude, we emphasise again that our aim is to provide a Bayesian computation method-114

ology that complements rather than competes with modern convex optimisation, particularly115

by enabling advanced Bayesian analyses for high-dimensional models that are log-concave.116

The remainder of the paper is organised as follows: Section 2 defines notation, introduces117

the class of models considered, and recalls the Langevin MCMC approach that is the basis118

of our method. In Section 3 we present the proposed MCMC method, analyse its theoretical119

properties in detail, provide practical implementation guidelines, and discuss connections with120

the original proximal MCMC algorithms described in [36]. Section 4 illustrates the methodol-121

ogy on four experiments related to image deconvolution and tomographic reconstruction with122

total-variation and `1 sparse priors, where we conduct a range of challenging Bayesian analyses123

related to model comparison and uncertainty quantification. Conclusions and perspectives for124

future work are reported in Section 5. Proofs are finally reported in Appendices A and C.125

sec:bac
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2. Bayesian analysis and computation.126

2.1. Notations and Conventions. Denote by B(Rd) the Borel σ-field of Rd. For all127

A ∈ B(Rd), denote by Vol(A) its Lebesgue measure. Denote by M(Rd) the set of all Borel128

measurable functions on Rd and for f ∈ M(Rd), ‖f‖∞ = supx∈Rd |f(x)|. For µ a probability129

measure on (Rd,B(Rd)) and f ∈ M(Rd) a µ-integrable function, denote by µ(f) the integral130

of f w.r.t. µ. For two probability measures µ and ν on (Rd,B(Rd)), the total variation norm131

of µ and ν is defined as132

‖µ− ν‖TV = sup
f∈M(Rd),‖f‖∞≤1

∣∣∣∣∫
Rd
f(x)dµ(x)−

∫
Rd
f(x)dν(x)

∣∣∣∣133

Let f : Rd → (−∞,+∞]. If f is a Lipschitz function, namely there exists C ≥ 0 such that for134

all x, y ∈ Rd, |f(x)− f(y)| ≤ C ‖x− y‖, then denote135

‖f‖Lip = inf{|f(x)− f(y)| ‖x− y‖−1 | x, y ∈ Rd, x 6= y} .136

f is said to be proper if there exists x0 ∈ Rd such that f(x0) < +∞. Denote for all M ∈ R,137

{f ≤ M} = {z ∈ Rd | f(z) ≤ M}. f is said to be lower semicontinuous if for all M ∈ R,138

{f ≤M} is a closed subset of Rd. For k ≥ 0, denote by Ck(Rd), the set of k-times continuously139

differentiable functions. For f ∈ C1(Rd), denote by ∇f the gradient of f . Denote for all q ≥ 1,140

the `q norm ‖·‖q on Rd by for all x ∈ Rd, ‖x‖q = (
∑d

i=1 |xi|
q)1/q. Denote by ‖·‖ the Euclidian141

norm on Rd. For all x ∈ Rd and M > 0, denote by B(x,M), the ball centered at x of radius142

M . For a closed convex K ⊂ Rd, denote by projK (·), the projection onto K, and ιK the convex143

indicator of K defined by ιK(x) = 0 if x ∈ K, and ιK(x) = +∞ otherwise. In the sequel, we144

take the convention that inf ∅ = ∞, 1/∞ = 0 and for n, p ∈ N, n < p then
∑n

p = 0 and145 ∏n
p = 1.146

2.2. Imaging inverse problems. We consider inverse problems where we seek to estimate
an unknown quantity x ∈ Rd from an observation y, related to x by a forward statistical model
with likelihood function p(y|x). Following a Bayesian approach, we use prior knowledge about
x to reduce the uncertainty and deliver accurate estimation results [22]. Precisely, we specify
a prior distribution p(x) promoting expected properties (e.g., sparsity, piecewise regularity, or
smoothness), and combine observed and prior information by using Bayes’ theorem, leading
to the posterior distribution [40]

π(x) , p(x|y) =
p(y|x)p(x)∫

Rd p(y|x)p(x)dx
,

that we henceforth denote as π, and which models our knowledge about x after observing y.147

In this paper we focus on inverse problems that are convex. We assume that π is log-concave,148

i.e.149

π(x) =
e−U(x)∫

Rd e−U(s)ds
,posterior (1)150

for some measurable function U : Rd → (−∞,+∞] satisfying the following condition.151
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assum:form-potential H1. U = f + g, where f : Rd → R and g : Rd → (−∞,+∞] are two lower bounded152

functions satisfying:153

(i) f is convex, continuously differentiable, and gradient Lipschitz with Lipschitz constant Lf ,154

i.e. for all x, y ∈ Rd155

–eq:gradient-Lip˝ (2) ‖∇f(x)−∇f(y)‖ ≤ Lf ‖x− y‖ .156

item:assum-prior(ii) g is proper, convex and lower semi continuous (l.s.c).157

Notice that the class (1) comprises many important models that are used extensively in158

modern imaging sciences. Particularly, models of the form U(x) = ‖y − Ax‖2/2σ2 + φ(Bx)159

for some linear operators A, B, and convex regulariser φ that is typically non-smooth, and160

which may also encode convex constraints on the parameter space. In such cases f(x) =161

‖y −Ax‖2/2σ2 and g(x) = φ(Bx) for instance.162

When x is high-dimensional, drawing inferences from π directly is generally not possible.163

Instead we use summaries, particularly point estimators, that capture some of the information164

about π that is relevant for the application considered [40]. In particular, modern statistical165

imaging methodology relies strongly on the maximum-a-posteriori (MAP) estimator defined166

by:167

x̂MAP = arg max
x∈Rd

π(x) = arg min
x∈Rd

U(x) ,map (3)168

which can often be computed efficiently, even in very large problems, by using proximal169

convex optimisation algorithms [10; 32]. From the practitioner’s viewpoint, this is a main170

advantage w.r.t. most other summaries that require high-dimensional integration w.r.t. π,171

which is generally significantly more computationally expensive [39].172

However, in its raw form, mathematical imaging based on optimisation struggles to sup-173

port complex statistical analyses. For example, such methods are typically unable to as-174

sess the uncertainty in the solutions delivered and to support uncertainty quantification and175

decision-making procedures (e.g. hypothesis tests). Similarly, they have difficulty checking176

and comparing alternative mathematical models intrinsically (i.e., without ground truth avail-177

able). To perform such advanced (often Bayesian) analyses and deliver the full richness of the178

statistical paradigm it is necessary to use Monte Carlo stochastic simulation algorithms [17].179

As mentioned previously, the high-dimensionality and the lack of smoothness of π pose180

important challenges from a Bayesian computation viewpoint. This paper presents a new181

MCMC methodology to tackle this problem. The proposed methodology is general, robust,182

theoretically sound, and computationally efficient, and can be applied straightforwardly to any183

model satisfying (1) that can be addressed by using proximal convex optimisation (particularly184

by using the gradient of f and the proximal operator of g, similarly to forward-backward185

splitting algorithms).186

Finally, we mention at this point some recent works that also consider new MCMC methods187

to sample from non-smooth posterior distributions with `1 priors, which is a specific subclass188

of (1). Most of these works consider Gibbs sampling strategies based either on auxiliary189

variables [34] or on direct simulation from the univariate conditional densities involved [25; 26].190

An alternative strategy is to use a non-linear transformations to change the `1 prior into a191
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Gaussian distribution, which then enables using the randomize-then-optimise (RTO) method192

of [4] to generate samples (see [47] for details). Similarly to our methodology, RTO combines193

optimisation and sampling steps, albeit in a completely different way (precisely, RTO simulates194

high-dimensional Gaussian vectors by minimising a loss function with random parameters).195

2.3. Bayesian computation: unadjusted and Metropolis-adjusted Langevin algorithms.196

The MCMC method proposed in this paper is derived from the discretization of overdamped197

Langevin diffusions. Let Ū : Rd → R be a continuously differentiable function and consider198

the Langevin stochastic differential equations (SDE) given by199

–eq:langevin-1˝ (4) dXt = −∇Ū(Xt)dt+
√

2dBd
t ,200

where (Bd
t )t≥0 is a d-dimensional Brownian motion. Under additional mild assumptions, this201

equation has a unique strong solution. In addition if
∫
R e−Ū(x)dx <∞, then π̄(x) ∝ e−Ū(x) is202

the unique invariant distribution of the semi-group associated with the Langevin SDE, see [23].203

Consequently, if we could solve (4) and let t→∞, this would provide samples from π̄ useful204

for Bayesian computation. Since it is possible to analytically solve (4) only in very specific205

cases, we consider a discrete-time Euler-Maruyama approximation and obtain the following206

Markov chain (Xk)k≥0: for all k ≥ 0207

–eq:definition-Euler˝ (5) ULA : Xk+1 = Xk − γ∇Ū(Xk) +
√

2γZk+1 ,208

where γ > 0 is a given step size and (Zk)k≥1 is a sequence of i.i.d. d-dimensional standard209

Gaussian random variables. This scheme has been first introduced in molecular dynamics by210

[15] and [33], and then popularized in artificial intelligence by [18], [19] and in computational211

statistics by [31] and [42]. Following [42], this algorithm is referred to as the Unadjusted212

Langevin Algorithm (ULA).213

In Bayesian computation, the samples (Xk)k≥0 generated by ULA (5) are used to esti-214

mate probabilities and expectations w.r.t. π̄. This scheme has attracted significant attention215

recently, in particular for high-dimensional problems were most Monte Carlo methods strug-216

gle. Theory for ULA advanced significantly recently with the development of non-asymptotic217

bounds in total variation distance between π̄ and the marginal laws of the Markov chain218

(Xk)k≥0 defined by ULA [11; 13], with explicit dependence on the stepsize γ and the dimen-219

sion d (see Subsection 3.2). These new theoretical results are important because they provide220

estimation accuracy guarantees for ULA, as well as valuable new insights into the convergence221

properties of the algorithm. In particular, they establish that if Ū is convex and gradient Lip-222

chitz, then ULA’s convergence properties deteriorate at most polynomially as d increases.223

Remarkably, if in addition Ū is strongly convex, then it deteriorates at most linearly with d,224

confirming the empirical evidence that ULA is a highly computationally efficient method to225

sample in high-dimensional settings.226

It is worth emphasising at this point that this deep understanding of ULA is very recent.227

Indeed, without a proper theoretical underpinning, ULA has been traditionally regarded as228

unreliable and rarely applied directly in statistics or statistical image processing. Instead,229

most applications reported in the literature adopt a safe approach and complement ULA with230

a Metropolis-Hastings correction step targeting π̄, as recommended by [44] and [42]. This231
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correction guarantees that the resulting Metropolis Adjusted Langevin Algorithm (MALA)232

generates a reversible Markov chain with respect to π̄, and therefore eliminates the asymptotic233

bias. And perhaps more importantly, it places ULA within the sound theoretical framework234

of Metropolis-Hasting algorithms. For sufficiently smooth densities MALA inherits the good235

convergence properties of ULA and scales efficiently to high-dimensional settings [42].236

Unfortunately, neither ULA nor MALA are well defined for non-smooth target densities,237

which strongly limits their application to modern mathematical imaging problems. In fact,238

both theory and experimental evidence show that ULA and MALA often run into difficulties239

if π is not sufficiently regular. For example, when ∇ log π is not Lipchitz continuous ULA is240

generally explosive and MALA is not geometrically ergodic (see [42; 36, Figure 2]). Similarly,241

when ∇ log π is subdifferentiable and therefore, at least from a purely algorithmic viewpoint,242

the algorithms could still be applied, the theory underpinning the ULA and MALA collapses243

and even the convergence of the time-continuous Langevin diffusion driving the algorithms244

becomes unclear. Moreover, many applications involve constraints on the parameter space245

and then π is supported only on a bounded convex set K. In such case, ∇ log π is bounded246

on K and infinite or not defined outside K. Then it is not possible to use ULA, and MALA247

typically behaves very poorly (the algorithm gets “stuck” whenever the proposal drives the248

Markov chain outside K). Following a proximal MCMC approach [36], in the following section249

we present a new ULA that exploits tools from convex calculus and proximal optimisation to250

address these issues, and sample efficiently from high-dimensional log-concave densities of the251

form H1 that are beyond the scope of conventional ULAs and MALAs.252
sec:more-yosida-regul

3. Proximal MCMC: Moreau-Yosida regularised Unadjusted Langevin Algorithm.253
ssec:MYULAl

3.1. Proposed method. A central idea in this work is to replace the non-smooth poten-254

tial U with a carefully designed smooth approximation Uλ which, by construction, has the255

following two key properties: 1) its Euler-Maruyama discrete-time approximations are always256

stable and have favourable convergence properties, and 2) we can make πλ ∝ e−U
λ

arbitrarily257

close to π by adjusting an approximation parameter λ > 0.258

In a manner akin to [36], we define such approximations by using Moreau-Yosida envelopes259

[9] which we recall below. Let g : Rd → (−∞,+∞] be a l.s.c convex function and λ > 0. The260

λ-Moreau-Yosida envelope of g is a carefully regularised approximation of g given by261

–eq:id-MY-env˝ (6) gλ(x) = min
y∈Rd

{
g(y) + (2λ)−1 ‖x− y‖2

}
,262

where λ is a regularisation parameter that controls a trade-off between the regularity proper-263

ties of gλ and the approximation error involved. Remarkably, by [43, Example 10.32, Theorem264

9.18], the approximation gλ inherits the convexity of g and is always continuously differen-265

tiable, even if g is not. In fact, gλ is gradient Lipshitz [43, Proposition 12.19]: for all x, y ∈ Rd,266

–eq:lip˙moreau˙yosida˝ (7)
∥∥∥∇gλ(x)−∇gλ(y)

∥∥∥ ≤ λ−1 ‖x− y‖ .267

The gradient is given by for all x ∈ Rd268

–eq:definition-grad-prox˝ (8) ∇gλ(x) = λ−1
(
x− proxλg(x)

)
,269
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8 A. DURMUS, É. MOULINES AND M. PEREYRA

where270

–eq:prox˙g˝ (9) proxλg(x) = arg min
y∈Rd

{
g(y) + (2λ)−1 ‖x− y‖2

}
,271

is the proximal operator of g [9]. This operator is used extensively in imaging methods based on272

convex optimisation, where it is generally computed efficiently by using a specialised algorithm273

[10; 32]. Indeed, similarly to gradient mappings, proxλg also moves points in the direction of274

the minimum of g (by an amount related to the value of λ), and has many properties that are275

useful for devising fixed-point methods [9].276

In addition, gλ envelopes g from below: for all x ∈ Rd, gλ(x) ≤ g(x), and since for277

0 < λ < λ′ and x, y ∈ Rd, g(y) + (2λ′)−1 ‖x− y‖2 ≤ g(y) + (2λ)−1 ‖x− y‖2, we get that for278

all x ∈ Rd gλ
′
(x) ≤ gλ(x). By [43, Theorem 1.25], gλ converges pointwise to g as λ goes to 0,279

i.e. for all x ∈ Rd,280

–eq:limit-d-lambda˝ (10) lim
λ→0

gλ(x) = g(x) .281

Hence, gλ provides a convex and smooth approximation to g that we can make arbitrarily282

close to g by adjusting the value of λ.283

So under H1, if g is not continuously differentiable, but the proximity operator associ-284

ated with g is available, we can consider sampling algorithms that use the λ-Moreau-Yosida285

envelope gλ instead of g. Here we propose to replace the potential U with the approximation286

Uλ : Rd → R defined for all x ∈ Rd by287

Uλ(x) = gλ(x) + f(x) ,288

which we will use to define a surrogate target density πλ ∝ e−U
λ
. We will see that such289

approximation is endowed with very useful regularity and approximation accuracy properties.290

Proposition 1 below implies that the probability measure πλ on Rd, with density with
respect to the Lebesgue measure, also denoted by πλ and given for all x ∈ Rd by

πλ(x) =
e−U

λ(x)∫
Rd e−Uλ(s)ds

,

is well defined, log-concave, Lipschitz continuously differentiable, and as close to π as required.291

assum:integrabilite H2. Assume that one of these two conditions holds:292

assum:integrable˙g(i) e−g is integrable with respect to the Lebesgue measure.293

assum:lipschitz˙g(ii) g is Lipschitz.294

propo:finite-measure-MY Proposition 1. Assume H1 and H2.295

a) For all λ > 0, πλ defines a proper density of a probability measure on Rd, i.e.296

0 <

∫
Rd

e−U
λ(y)dy < +∞ .297

b) For all λ > 0, πλ is log-concave and continuously differentiable with298

–eq:definition-grad-prox˙U˝ (11) ∇Uλ(x) = −∇ log πλ(x) = ∇f(x) + λ−1(x− proxλg (x)) .299

In addition, ∇Uλ is Lipschitz with constant L ≤ Lf + λ−1.300

This manuscript is for review purposes only.



EFFICIENT BAYESIAN COMPUTATION BY PROXIMAL MARKOV CHAIN MONTE CARLO: WHEN
LANGEVIN MEETS MOREAU 9

item:propo:dist˙TV˙MY˙1c) The approximation πλ converges to π as λ ↓ 0 in total variation norm, i.e.301

lim
λ→0
‖πλ − π‖TV = 0 .302

item:propo:dist˙TV˙MY˙2d) If H2-(ii) then for all λ > 0,303

‖πλ − π‖TV ≤ λ ‖g‖2Lip .304

Proof. The proof is postponed to Appendix A.305

Figure 1 shows the approximations of two non-smooth densities that satisfy H1:306

item:caseLaplace 1. the Laplace density π(x) = (1/2) exp (|x|), for which307

πλ(x) =
exp

{
(λ/2− |x|)1{|x|≥λ} − (x2/(2λ))1{|x|<λ}

}
2
{

e−λ/2 + (2π/λ)1/2(Φ(λ1/2)− 1/2)
} ,308

where Φ is the cumulative function of the standard normal distribution.309

item:caseUnif 2. the uniform density π(x) = (1/2) exp(−ι[−1,1](x)), for which310

πλ(x) =
{

2 +
√

2πλ
}−1

exp
[
{−max(|x| − 1, 0)}2 /(2λ)

]
.311

We observe that the approximations are smooth and converge to π as λ decreases, as described312

by Proposition 1. Also for these two examples, analytic expressions for ‖π − πλ‖TV can be313

found, and Figure 2 shows ‖π − πλ‖TV as a function of λ > 0. Notice that in the case of the314

Laplace density ‖π − πλ‖TV goes to 0 quadratically in λ as λ goes to 0, which is faster than315

the linear bound given in Proposition 1-d). Also note that this bound does not apply to the316

uniform density, and in this case ‖π − πλ‖TV vanishes at rate
√
λ.

(a) π(x) = 1
2e−|x| (b) π(x) = 1

2 ι[−1,1](x)

Figure 1. Density plots for the Laplace (a) and uniform (b) distributions (solid black), and their
smooth approximations πλ for λ = 1, 0.1, 0.01 (dashed blue and green, and solid red). FigMoreauApprox

317
We now make two key observations. First, Proposition 1 shows that ∇Uλ is gradient318

Lipschitz and therefore it guarantees that the Langevin SDE constructed with Uλ converges319
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Figure 2. Total variation norm between π and its smooth approximation πλ as function of λ. FigMoreauApprox-TV

to πλ as t→∞ (formally, it guarantees that the Langevin SDE associated with πλ admits a320

unique strong solution (Xλ
t )t≥0 and πλ is the unique stationary distribution of the semigroup).321

More importantly, as it will be seen below, it implies that the ULA chain derived from a Euler-322

Maruyama discretisation of this Langevin diffusion will be, by construction, well behaved and323

useful for Monte Carlo integration with respect to πλ.324

Second, Proposition 1 also establishes that λ controls the estimation bias involved in325

performing estimations with πλ as a substitute of π. This approximation error can be made326

arbitrarily small, and is bounded explicitly by λ ‖g‖2Lip when g is Lipschitz.327

We are now in a position to present the new MCMC methodology proposed in this work,328

which is essentially an application of ULA to πλ. Precisely, given λ > 0 and a stepsize γ > 0,329

we use an Euler-Maruyama approximation of (Xλ
t )t≥0, and obtain the following Markov chain330

(XM
k )k≥0: for all k ≥ 0331

–eq:def-MYRULA˝ (12) MYULA : XM
k+1 = (1− γ

λ)XM
k − γ∇f(XM

k ) + γ
λ proxλg (XM

k ) +
√

2γZk+1 ,332

where {Zk, k ∈ N∗} is a sequence of i.i.d. d dimensional standard Gaussian random vari-333

ables. This algorithm will be referred to as the Moreau-Yosida Unadjusted Langevin Algorithm334

(MYULA), and is summarised in Algorithm 1 below (see Subsection 3.3 for guidelines for set-335

ting the values of γ and λ). Note that the stationary distribution of the MYULA sequence336

{XM
k , k ∈ N} is different from the target distribution πλ, and depends on the stepsize γ > 0.337

Nevertheless, we show in Subsection 3.2 that, choosing λ and γ appropriately, the samples are338

very close to π.339

Besides, to compute the expectation of a function h : Rd → R under π from {XM
k ; 0 ≤340

k ≤ n}, an optional importance sampling step might be used to correct the regularization.341

This step amounts to approximate
∫
Rd h(x)π(x)dx by the weighted sum342

–eq:importance˙sampling˝ (13) Sn(h) =
n∑
k=0

ωk,nh(Xk) , with ωk,n =

{
n∑
`=0

eḡ
λ(XM

` )

}−1

eḡ
λ(XM

k ) ,343
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where for all x ∈ Rd344

ḡλ(x) = gλ(x)− g(x) = g(proxλg (x))− g(x) + (2λ)−1
∥∥∥x− proxλg (x)

∥∥∥2
.345

To remove this asymptotic bias, we can add an Hastings-Metropolis step, which will346

produce a Markov chain {X̃λ
k , k ∈ N} which is reversible this time with respect to πλ and347

use similarly an importance sampling step to correct for the bias introduced by smoothing.348

This algorithm will be called the Moreau-Yosida Regularized Metropolis-adjusted Langevin349

Algorithm (MYMALA).350

The focus of this work is on MYULA without importance sampling or Metropolis-Hastings351

correction. A study of MYMALA is currently in progress and will be reported separately.352

Algorithm 1 Moreau-Yoshida unadjusted Langevin algorithm (MYULA)
Algo:MYULA

set XM
0 ∈ Rd, λ > 0, γ ∈ (0, λ/(λLf + 1)], n ∈ N

for k = 0 : n do
Zk+1 ∼ N (0, Id)
XM
k+1 = (1− γ

λ)XM
k − γ∇f(XM

k ) + γ
λ proxλg (XM

k ) +
√

2γZk+1

end for

For illustration, Figure 3 shows the sample approximations of the univariate Laplace and353

uniform distributions of Figure 1 (the true densities are depicted in solid blue for comparison).354

The histograms were generated using 104 iterations of MYULA with parameters λ = 10−3355

and δ = 2λ. Observe that the samples provide a good approximation of the desired target356

densities, particularly of the uniform distribution which is beyond the scope of the conventional357

ULA. Also observe that the approximation of the uniform distribution has Gaussian tails, as358

per the Lipchitz differentiability of πλ approximation (see Proposition 1 and Figure 1). From359

Proposition 1, this error can be made arbitrarily low by adjusting the value of λ.360

(a) π(x) = 1
2e−|x| (b) π(x) = 1

2 ι[−1,1](x)

Figure 3. MYULA sample approximations of the Laplace (a) and uniform (b) distributions (true
density in solid blue). Histograms computed with 104 samples generated using λ = 10−3 and δ = 2λ. FigMYULAApprox

Finally, similarly to ULA, it is possible to adapt MYULA to use a stochastic gradient361
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12 A. DURMUS, É. MOULINES AND M. PEREYRA

strategy based on an unbiased estimator of ∇f (see [46] for details). This can be useful in362

applications that involve very large datasets for which computing the exact gradient would be363

too computationally expensive, for example machine learning applications. The specialisation364

of MYULA to such problems is currently under investigation and will be reported separately.365
ssec:convergence˙analysis

3.2. Theoretical convergence analysis of MYULA. In this section we present a detailed366

theoretical analysis of MYULA implemented with fixed regularization parameter λ > 0 and367

step-size γ > 0. We first establish that the chains generated by MYULA converge geomet-368

rically fast to an approximation of π that is controlled by λ and γ, and which can be made369

arbitrarily close to π. More importantly, we also establish non-asymptotic bounds for the370

estimation error of MYULA with a finite number of iterations. This enables an analysis of371

the behaviour of MYULA as the dimensionality of the model increases, as well as deriving372

practical guidelines for setting λ and γ for specific models.373

First, under H 1, it has been observed that gλ is λ−1-gradient Lipschitz, which im-374

plies that Uλ is gradient Lipschitz as well: there exists L ≥ 0 such that for all x, y ∈ Rd,375 ∥∥∇Uλ(x)−∇Uλ(y)
∥∥ ≤ L ‖x− y‖ and376

–eq:definition˙const˙lip˙u˙lambda˝ (14) L ≤ Lf + λ−1 .377

Of course, this bound strongly depends on the decomposition of U in a smooth and a non-378

smooth part, which is arbitrary and therefore can be pessimistic (for instance, if U is contin-379

uously differentiable, g can be chosen to be 0 which implies Uλ = U and L = Lf ).380

We assume first the following assumption on the potential Uλ.381

assum:potentialUl H3. There exist a minimizer x? of Uλ, ηc > 0 and Rc ≥ 0 such that for all x ∈ Rd,382

‖x− x?‖ ≥ Rc,383

–eq:superexpo˙potential˝ (15) Uλ(x)− Uλ(x?) ≥ ηc ‖x− x?‖ .384

Note that in fact H3 always holds under H1 and H2, since by Lemma 4 and Proposition 1 there385

exist C1, C2 > 0 such that Uλ(x) ≥ C1 ‖x‖−C2. Therefore, since Uλ is continuous on Rd, there386

exists a minimizer x? of Uλ and (15) holds with ηc ← C1/2 and Rc ← 2(C2+‖x?‖+Uλ(x?))/C1.387

However, these constants are non quantitative, and that is why we introduce H3 to derive388

quantitative bounds.389

Consider the Markov kernel Rγ associated to the Euler-Maruyama discretization (12)390

given, for all A ∈ B(Rd) and x ∈ Rd by391

–eq:definition˙R˙kernel˝ (16) Rγ(x,A) = (4πγ)−d/2
∫

A
exp

(
−(4γ)−1

∥∥∥y − x+ γ∇Uλ(x)
∥∥∥2
)

dy .392

The sequence (XM
n )n≥0 defined by (12) is a homogeneous Markov chain associated with the393

Markov kernel Rγ . Therefore for all n ∈ N, n ≥ 1, and x ∈ Rd, the distribution of XM
n started394

at x is Rnγ (x, ·) defined by induction for all A ∈ B(Rd) by395

Rnγ (x,A) =

∫
A
Rn−1
γ (x,dy)Rγ(y,A) .396

397
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It is easily seen that under H1, since Uλ is continuously differentiable, Rγ is irreducible398

with respect to the Lebesgue measure, all compact sets are 1-small and the kernel is strongly399

aperiodic. In addition under H3, since U is also convex then [13, Proposition 13] shows that400

Rγ satisfies a Foster-Lyapunov drift condition, i.e. for all γ̄ ∈ (0, L], γ ∈ (0, γ̄] and for all401

x ∈ Rd,402

RγVc(x) ≤ %γcVc(x) + bcγ ,403

where404

Vc(x) = exp

{
(ηc/4)

(
‖x− x?‖2 + 1

)1/2
}

(17a)405

%c = e−2−4η2c (21/2−1) , ac = max(1, 2d/ηc,Rc)(17b)406

bc = {(ηc/4)(d+ (ηcγ̄/4))− log(%c)} eηc(a2c+1)1/2/4+(ηcγ̄/4)(d+(ηcγ̄/4)) .(17c)407408

By [29, Theorem 16.0.1], Rγ has a unique invariant distribution πλγ and is Vc-uniformly
eq:convex˙drift409

geometrically ergodic: there exists κc ∈ (0, 1) and Cc ≥ 0 such that all n ≥ 0 and x ∈ Rd,410

‖Rnγ (x, ·)− πλγ‖TV ≤ CcVc(x)κnc .411

Note πλγ is different from πλ, nevertheless the following result shows that choosing γ small412

enough, the ULA generates samples very close to the distribution πλ.413

We are now ready to present our main theoretical result: a non-asymptotic bound of414

the total-variation distance between π and the marginal laws of the samples generated by415

MYULA. Denote in the following by ω : R+ → R+ the function given for all r ≥ 0 by416

–eq:Fsmall˝ (18) ω(r) = r2/
{

2Φ−1(3/4)
}2

.417

418

Theorem 2 ([13, Corollary 19]). Assume H1 and H3. Let γ̄ ∈
(
0, L−1

]
. For all ε > 0 andtheo:convergence˙TV˙dec-stepsize-convV

x ∈ Rd, we have

‖Rnγ (x, ·)− π‖TV ≤ ε ,

provided that n > Tγ−1 with419

T = max
{

32 η−2
c log

(
8ε−1A1(x)

)
, log(16ε−1)

/
(− log(κ))

}
420

γ ≤
−d+

√
d2 + (2/3)A2(x)ε2(L2T )−1

2A2(x)/3
∧ γ̄ ,421

422
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14 A. DURMUS, É. MOULINES AND M. PEREYRA

where αc = max(1, 4d/ηc,Rc)423

βc = (ηc/4) [ηcαc/4 + d] max
{

1, (α2
c + 1)−1/2 exp(ηc(α

2
c + 1)1/2/4)

}
424

A1(x) = (1/2)(Vc(x) + bc(−%γc log(%c))
−1 + 8η−2

c βc) + 16η−2
c βce

32−1η2cω{(8/ηc) log(32η−2
c βc)}425

A2(x) = L2
(
4η−1

c

[
1 + log

{
Vc(x) + bc(−%γc log(%c))

−1
}])2

426

log(κ) = − log(2)(η2
c/32)

[
log
{

8η−2
c βc

(
3 + 4η−2

c e32−1η2cω{(8/ηc) log(32η−2
c βc)}

)}
+ log(2)

]−1
,427

428429

ac, %c, bc, Vc are defined in (17) and ω in (18).430

Proof. The proof follows from combining [13, Lemma 4, Theorem 14, Theorem 16].431

This result implies that the number of iteration to reach a precision target ε is, at worse,432

of order d5 log2(ε−1)ε−2 for this class of models. Significantly more precise bounds can be433

obtained under more stringent assumption on Uλ. In particular, we consider the case where434

Uλ is strongly convex outside some ball; see [14].435

assum:strongConvexityOutsideBallDriftV H4. There exist Rs ≥ 1 and m > 0, such that for all x, y ∈ Rd, ‖x− y‖ ≥ Rs,436 〈
∇Uλ(x)−∇Uλ(y), x− y

〉
≥ m ‖x− y‖2 .437

Of course, in the case where f is strongly convex then this assumption holds.438

Theorem 3 ([13, Lemma 4, Theorem 21]). Assume H1 and H4. Let γ̄ ∈
(
0, L−1

]
. Thentheo:convergence˙TV˙dec-stepsize-StV439

for all ε > 0, we get ‖Rnγ (x, ·)− π‖TV ≤ ε provided that n > Tγ−1 with440

T = (log{A1(x)} − log(ε/2))
/

(− log(κ))441

γ ≤
−d+

√
d2 + (2/3)A2(x)ε2(L2T )−1

2A2(x)/3
∧ γ̄ ,442

443

where444

A1(x) = 5 +
(
d/m+ R2

s

)1/2
+ (A1(x)/L2)1/2

445

A2(x) = L2
(
‖x− x?‖2 + 2(d+mR2

s )(e−γ(2m+γ̄L2)/(2m+ γ̄L2))−1
)

446

log(κ) = −(log(2)m/2)
[
log
{(

1 + emω{max(1,Rs)}/4
)

(1 + max(1,Rs))
}

+ log(2)
]−1

,447
448

and ω is given in (18).449

This result implies that the worst minimal number of iterations to achieve a precision level450

ε > 0 is this time of order d log(d) log2(ε−1)ε−2.451
guidelines

3.3. Selection of λ and γ. We now discuss practical guidelines for setting the values452

for λ and for γ. As mentioned previously, our aim is to provide an efficient computation453

methodology that can be applied straightforwardly to any model satisfying H 1. Hence,454
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rather than seeking optimal values for specific models, we focus on general rules that are455

simple, robust, and which only involve tractable quantities such as Lipschitz constants.456

First, by Theorem 2, γ should take its value in the range γ ∈ (0, λ/(Lfλ+1)] to guarantee
the stability of the Euler-Maruyama discretisation, and where we recall that Lf is the Lipschitz
constant of ∇f . The values of γ within this range are subject to the a bias-variance trade-off.
Precisely, large values of γ produce a fast-moving chain that convergences quickly and has low
estimation variance, but potentially relatively high asymptotic bias. Conversely, small values
of γ lead to low asymptotic bias, but produce a Markov chain that moves slowly and requires
a large number of iterations to produce a stable estimate (such chains often also suffer from
some additional bias from the transient or burn-in period). Because applications in imaging
sciences involve high dimensionality and require moderately low computing times, as a general
rule we recommend setting γ to a relatively large value. For example, in our experiments we
use

γ ∈ [λ/5(Lfλ+ 1), λ/2(Lfλ+ 1)] .

Observe that this range depends on the value of λ, which is also subject to a bias-variance457

tradeoff. Letting λ→ 0 to bring πλ close to π reduces asymptotic bias, but forces γ → 0 and458

consequently reduces significantly the efficiency of the chain. Conversely, increasing the value459

of λ accelerates the chain at the expense of some asymptotic bias. Based on our experience,460

and again with an emphasis on efficiency in high dimensional settings, we recommend using461

values of λ in the order of L−1
f (there is no benefit in using larger values of λ because γ462

saturates at L−1
f ). In all our experiments we use λ = 1/Lf and γ ∈ [L−1

f /10, L−1
f /4] and463

obtain estimation errors of the order of 1%.464

3.4. Connections to the proximal Metropolis-adjusted Langevin algorithm. We con-465

clude this section with a discussion of the connections between the proposed MYULA method466

and the original proximal Metropolis-adjusted Langevin algorithm (Px-MALA) [36]. That467

algorithm is also based on a Euler-Maruyama approximation of a Langevin SDE targeting a468

Moreau-Yoshide-type regularised approximation of π. However, unlike MYULA, that algo-469

rithm uses this approximation as proposal mechanism to drive a Metropolis-Hastings (MH)470

algorithm targeting π (not the regularised approximation). The role of the MH is two-fold: it471

removes the asymptotic bias related to the approximations involved, and it provides a theoret-472

ical framework for Px-MALA by placing the scheme within the framework of MH algorithms473

(recall that many theoretical results regarding ULAs are very recent). However, as mentioned474

previously, the introduction of the MH step often slows down the algorithm, thus leading475

to higher estimation variance and longer chains (and potentially some bias from the chain’s476

initial transient regime). Of course, it also introduces a significant computational overhead477

related to the computation of the MH acceptance ratio [36]. Another importance difference478

between MYULA and Px-MALA is that the latter uses the proximal operator of U , which479

is often unavailable and has to be approximated by using a forward-backward scheme based480

on the decomposition U = f + g that we also use in this paper. This approximation error481

is corrected in practice by the MH step, but it is not considered in the theoretical analysis482

of the algorithm. Conversely, in MYULA this decomposition is explicit, both in the com-483

putational aspects of the method as well as in its theoretical analysis. Furthermore, the484

theory for MYULA presented in this paper is significantly more complete than that currently485
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available for Px-MALA and other MALAs. Finally, MYULA is also more robust and simple486

to implement than Px-MALA. For example, identifying suitable values of γ for MYULA is487

straightforward by using the guidelines described above, whereas setting γ for Px-MALA can488

be challenging and often requires using an adaptive MCMC approach based on a stochastic489

approximation scheme [36; 17].490

sec:experiments

4. Experimental results. In this section we illustrate the proposed methodology with four491

canonical imaging inverse problems related to image deconvolution and tomographic recon-492

struction with total-variation and `1 sparse priors. In the Bayesian setting these problems493

are typically solved by MAP estimation, which delivers accurate solutions and can be com-494

puted very efficiently by using proximal convex optimisation algorithm. Here we demonstrate495

MYULA by performing some advanced and challenging Bayesian analyses that are beyond the496

scope of optimisation-based mathematical imaging methodologies. For example, in Section497

4.1 we report two experiments where we use MYULA to perform Bayesian model choice for498

image deconvolution models, and where a novelty is that comparisons are performed intrin-499

sically (i.e., without ground truth available) by computing the posterior probability of each500

model given the observed data. Following on from this, in Section 4.2 we report the two ad-501

ditional experiments where we use MYULA to explore the posterior uncertainty about x and502

analyse specific aspects about the solutions delivered, particularly by computing simultaneous503

credible sets (joint Bayesian confidence sets).504

Moreover, to assess the computational efficiency and the accuracy of MYULA we bench-505

mark our estimations against the results of Px-MALA [36] targeting the exact posterior506

π(x) = p(x|y) (recall that this algorithm has no asymptotic estimation bias). We empha-507

sise at this point that we do not seek to compare explicitly and quantitatively the methods508

because: 1) MYULA and Px-MALA do not target the exact same stationary distribution; 2)509

high-dimensional quantitative efficiency comparisons may depend strongly on the summary510

statistics used to define the efficiency metrics; and 3) results can often be marginally improved511

by fine tuning the algorithm parameters (e.g., step sizes, burn-in periods, etc.). What our512

comparisons seek to demonstrate is that MYULA can deliver reliable approximate inferences513

with a computational cost that is often significantly lower than Px-MALA, and more impor-514

tantly, that it provides a general, robust, and theoretically sound computational framework515

for performing advanced Bayesian analyses for imaging problems. In all experiments the Lip-516

chitz constant Lf required to set the value γ was computed explicitely. Experiments were517

conducted on a Apple Macbook Pro computer running MATLAB 2015.518
exp:BMS

4.1. Bayesian model selection.519

4.1.1. Bayesian analysis and computation. Most mathematical imaging problems can be520

solved with a range of alternative models. Currently, the predominant approach to select the521

best model for a specific problem is to compare their estimations against ground truth. For522

example, given K alternative Bayesian models M1, . . . ,MK , practitioners often benchmark523

models by artificially degrading a set of test images, computing the MAP estimator for each524

model and image, and then measuring estimation error with respect to the truth. The model525

with the best overall performance is then used in applications to analyse real data. Of course526

this approach to model selection has some limitations: 1) it relies strongly on test data that527
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may not be representative of the unknown, and 2) conclusions can depend on the estimation528

error metrics used.529

An advantage of formulating inverse problems within the Bayesian framework is that,530

in addition to strategies to perform point estimation, this formalism also provides theory531

to compare models objectively and intrinsically, and hence perform model selection in the532

absence of ground truth. Precisely, K alternative Bayesian models are compared through533

their marginal posterior probabilities534

–margPost˝ (19) p(Mj |y) =
p(y|Mj)K

−1∑K
k=1 p(y|Mk)K−1

, j = {1, . . . ,K} ,535

where for objectiveness here we use an uniform prior on the auxiliary variable j indexing the536

models, p(y|Mj) is the marginal likelihood537

–margLike˝ (20) p(y|Mj) =

∫
p(x, y|Mj)dx, j = {1, . . . ,K} ,538

measuring model-fit-to-data and p(y, x|Mj) is the joint probability density associated withMj539

(see Appendix B for details regarding the case of improper priors). Following Bayesian decision540

theory, to perform model selection we simply chose the model with the highest posterior541

probability (this is equivalent to performing MAP estimation on the model index j):542

M∗ = arg max
j∈{1,...,K}

p(Mj |y).543

From a computation viewpoint, performing Bayesian model selection for imaging problems544

is challenging because it requires evaluating the likelihoods p(y|Mj) up to a proportionality545

constant, or equivalently the Bayes factors p(y|Mj)/p(y|Mi) for i, j ∈ {1, · · · ,K} (see Ap-546

pendix C.2 for details regarding the case of improper priors). Here we perform this compu-547

tation by Monte Carlo integration. Precisely, given n samples XM
1 , . . . , XM

n from p(x|y,Mj),548

we approximate the marginal likelihood of model Mj by using the truncated harmonic mean549

estimator [41]550

–harmonicEstimator˝ (21) p(y|Mj) ≈

(
n∑
k=1

1A?(X
M
k )

p(XM
k , y|Mj)

)−1

Vol(A?) , j = {1, 2,K}551

where for all x, y, p(x, y|Mj) is joint density ofMj and A? = ∪Kj=1C?j,α is the union of highest552

posterior density regions (24) of each model at level (1− α) (see Section 4.2 for details about553

HPD regions). In our experiments we use the samples to calibrate each C?j,α for α = 0.8.554

Notice that it is not necessary to compute Vol(A?) to calculate (21) because the normalisation555

is retrieved via
∑K

j=1 p(Mj |y) = 1. See Appendix C for more details about this estimator and556

its use to compute the Bayes factors.557
ssec:exp1

4.1.2. Experiment 1: Image deconvolution with total-variation prior.558
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Experiment setup. To illustrate the Bayesian model selection approach we consider an559

image deconvolution problem with three alternative models related to three different blur560

operators. The goal of image deconvolution is to recover a high-resolution image x ∈ Rn561

from a blurred and noisy observation y = Hx + w, where H is a circulant blurring matrix562

and w ∼ N (0, σ2In). This inverse problem is ill-conditioned, a difficulty that Bayesian image563

deconvolution methods address by exploiting the prior knowledge available. For this first564

experiment we consider three alternative models involving three different blur operators H1,565

H2, and H3. With regards to the prior, we use the popular total-variation prior that promotes566

regularity by using the pseudo-norm TV (x) = ‖∇dx‖1−2, where ‖·‖1−2 is the composite `1−`2567

norm and ∇d is the two-dimensional discrete gradient operator. The posterior distribution568

p(x|y) for the models is given by569

Mj : π(x) ∝ exp
[
−(‖y −Hjx‖2/2σ2)− βTV (x)

]
deconvolutionTV (22)570

with fixed hyper-parameters σ > 0 and β > 0 set manually by an expert. This density is log-571

concave and MAP estimation can be performed efficiently by proximal convex optimisation.572

Figure 4 presents an experiment with the Boat test image of size d = 256 × 256 pixels.573

Figure 4(a) shows a blurred and noisy observation y, generated by using a 5× 5 uniform blur574

and Gaussian noise with σ = 0.47, related to a blurred signal-to-noise ratio of 40dB. Moreover,575

Figures 4(b)-(d) show the MAP estimates associated with three alternative instances of model576

(22) involving the following blur operators:577

• M1: H1 is the correct 5× 5 uniform blur operator.578

• M2: H2 is a mildly misspecified 6× 6 uniform blur operator.579

• M3: H3 is a strongly misspecified 7× 7 uniform blur operator.580

(All models share the same hyper-parameter values σ = 0.47 and β = 0.03 selected manually581

to produce good image deconvolution results.) We observe in Figure 4 that models M1 and582

M2 have produced sharp images with fine detail, whereasM3 is clearly misspecified. In terms583

of estimation performance with respect to the truth, as expected the estimate of Figure 4(c)584

corresponding to modelM1 achieves the highest peak signal-to-noise-ratio (PSNR) of 33.8dB,585

M2 scores 33.4dB, andM3 scores 13.4dB. Finally, computing the estimates displayed in Figure586

4 with a forward-backward optimisation algorithm [17], which is algorithmically similar to587

MYULA, required approximately 1 000 iterations and 30 seconds per model1.588

Model selection in the absence of ground truth. We now demonstrate the Bayesian approach589

to perform model selection intrinsically. Precisely, we ran 105 iterations of MYULA with590

the specific blur operators corresponding to M1, M2, and M3. For this experiment we591

implemented MYULA with f(x) = ‖y−Hjx‖2/2σ2 and g(x) = βTV (x), with fixed algorithm592

parameters λ = L−1
f = 0.45 and γ = L−1

f /5 = 0.1, and by using Chambolle’s algorithm593

[7] to evaluate the proximal operator of the TV-norm. Computing these samples required594

approximately 30 minutes per model. Following on from this, we used the samples to calibrate595

the high-posterior-density regions C?j of each model at level 20%, and then computed the Bayes596

factors between the models by using (21) (see C.1 for details).597

1The computation of the MAP estimates with the SALSA convex optimisation algorithm [1], which is faster
than the forward-backward splitting algorithm, required 2 seconds per model.

This manuscript is for review purposes only.



EFFICIENT BAYESIAN COMPUTATION BY PROXIMAL MARKOV CHAIN MONTE CARLO: WHEN
LANGEVIN MEETS MOREAU 19

(a) (b)

(c) (d)

Figure 4. Deconvolution experiment - Boat test image (256 × 256 pixels): (a) Blurred and noisy
image y, (b)-(d) MAP estimators corresponding to models M1, M2, and M3. FibBoat1

By applying this procedure we obtained that M1 has the highest posterior probability598

p(M1|y) = 0.964, followed by p(M2|y) = 0.036 and p(M3|y) < 0.001 (the values of the Bayes599

factors for this experiment are B̂1,2(y) = 26.8 and B̂1,3(y) > 103). These results, which have600

been computing without using any form of ground truth, are in agreement with the PSNR601

values calculated by using the true image and provide strong evidence in favour of modelM1.602

They also confirm the good performance of the Bayesian model selection technique.603

Comparison with proximal MALA. We conclude this first experiment by benchmarking our604

estimations against Px-MALA, which targets (22) exactly. Precisely, we recalculated the605

models’ posterior probabilities (31) with Px-MALA and obtained that p(M1|y) = 0.962,606

p(M2|y) = 0.038, and p(M3|y) < 0.001, indicating that the MYULA estimate has an ap-607

proximation error of the order of 0.5% (to obtain accurate estimates for Px-MALA we used608

n = 107 iterations with an adaptive time-step targeting an average acceptance rate of order609

45%). Moreover, comparing the chains generated with MYULA and Px-MALA revealed that610

MYULA is significantly more computationally efficient than Px-MALA. For illustration, Fig.611
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(a) (b)

Figure 5. MYULA and Px-MALA comparison: (a) Convergence of the chains to the typical set of
(22) under model M1 (logarithmic scale), (b) chain autocorrelation function (ACF). FibBoat2

5(a) shows the transient regimes of the MYULA and Px-MALA chains related M1, where612

starting from a common initial condition the chains converge to the posterior typical set2 of613

p(x|y) (to improve visibility this is displayed in logarithmic scale). Observe that MYULA614

requires around 102 iterations to navigate the parameter space and reach the typical set,615

whereas Px-MALA requires 104 iterations. Furthermore, to compare the efficiency of the616

chains in stationarity, Fig. 5(b) shows the autocorrelation function of the chains generated617

by MYULA and Px-MALA. To highlight the efficiency of MYULA we have used the chains’618

slowest component3 as summary statistic. Again, observe that MYULA is clearly significantly619

more efficient than Px-MALA. From a practitioner’s viewpoint, this efficiency advantage is620

further accentuated by the fact that MYULA iterations are almost twice less computationally621

expensive than Px-MALA iterations, which include the MH step.622
sec:experiment-2:-image

4.1.3. Experiment 2: Image deconvolution with wavelet frame.623

Experiment setup. The second model selection experiment we consider involves three alter-624

native image deconvolution models with different priors. This experiment is more challenging625

than the previous one because priors operate indirectly on y through x. We consider three626

models of the form627

Mj : p(x|y) ∝ exp
[
−(‖y −Hx‖2/2σ2)− βj‖Ψjx‖1

]
deconvolutionL1wave (23)628

where Ψj is a model dependent frame:629

• M1: Ψ1 is a redundant Haar frame with 6-level, and β1 = 0.02 is selected automatically630

by using a hierarchical Bayesian method [38],631

2In stationarity, x|y is with very high probability in the neighbourhood of the (d − 1)-dimensional shell
{x : U(x) = E[U(x)|y]}, see [37]

3The chain’s slowest component was identified by doing an approximate singular value decomposition of
the chain’s covariance matrix and then projecting the samples on the dominant eigenvector.
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• M2: Ψ2 is a redundant Haar frame with 3-level, and β2 = 0.02 is selected automatically632

by using a hierarchical Bayesian method [38],633

• M3: Ψ3 is a redundant Haar frame with 3-level, and β3 = 0.003 is selected automati-634

cally by using the L-curve method [20].635

To make the selection problem even more challenging, in this experiment we use a higher noise636

level σ = 1.76, related to a blurred signal-to-noise ratio of 30dB. We note that (23) is log-637

concave and MAP estimation can be performed efficiently by proximal convex optimisation.638

Fig. 6 presents an experiment with the Flinstones test image of size d = 256 × 256639

pixels. Fig. 4(a) shows the blurred and noisy observation y used in this experiment, which we640

generated by using a 5× 5 uniform blur and σ = 1.76, and Fig. 6(b)-(d) show the MAP esti-641

mates obtained withM1,M2, andM3 by convex optimisation (we used a forward-backward642

splitting algorithm [17] that is algorithmically similar to MYULA, and which required approx-643

imately 2 500 iterations and 2 minutes per model4). We observe in Figure 4 that models M1644

andM2 have produced sharp images with fine detail, whereasM3 is misspecified. In terms of645

estimation performance with respect to the truth, the estimate of Figure 6(c) corresponding646

to model M2 achieves the highest peak signal-to-noise-ratio (PSNR) of 20.8dB, M1 scores647

20.6dB, and M3 scores 11.6dB.648

Model selection in the absence of ground truth. Similarly to the previous experiment, we649

used MYULA to perform Bayesian model selection intrinsically. Precisely, we used MYULA650

to generate three sets of n = 105 samples XM
1 , . . . , XM

n approximately distributed according651

to (23) with the parameters corresponding to M1, M2, and M3. For this experiment we652

implemented MYULA with f(x) = ‖y−Hx‖2/2σ2 and g(x) = βj‖Ψjx‖1, with fixed algorithm653

parameters λ = L−1
f = 4.5 and γ = L−1

f /5 = 0.9. Computing these samples required 50654

minutes per model. Following on from this, we used the samples to calibrate the high-posterior-655

density regions C?j of each model at level 20%, and then computed the Bayes factors between656

the models by using (21) (see C.1 for details).657

By applying this procedure we obtained that M2 has the highest posterior probability658

p(M2|y) = 0.42, followed by p(M1|y) = 0.32 and p(M3|y) = 0.26 (the values of the Bayes659

factors for this experiment are B̂2,1(y) = 1.31 and B̂2,3(y) = 1.62). Note that these results,660

which have been computing without using any form of ground truth, are in agreement with the661

PSNR values calculated by using the true image and indicate thatM2 is the most appropriate662

model for data y.663

Comparison with proximal MALA. Again, we conclude our second experiment by bench-664

marking our estimations against Px-MALA, which targets (23) exactly. Precisely, we recalcu-665

lated the models’ posterior probabilities (31) with Px-MALA and obtained that p(y|M1) =666

0.41, p(y|M2) = 0.33, and p(y|M3) = 0.26, indicating that the MYULA estimate has an667

approximation error of the order of 0.5% (to obtain accurate estimates for Px-MALA we used668

n = 107 iterations with an adaptive time-step targeting an average acceptance rate of order669

45%). Moreover, efficiency analyses indicate that in this case MYULA is approximately an670

order of magnitude more efficient per iteration than Px-MALA, with an additional advantage671

in terms of time-normalised computational efficiency because of a lower computational cost672

4The computation of the MAP estimates with the SALSA convex optimisation algorithm [1], which is faster
than the forward-backward splitting algorithm, required 4 seconds per model.
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(a) (b)

(c) (d)

Figure 6. Deconvolution experiment - Flinstones test image (256 × 256 pixels): (a) Blurred and
noisy image y, (b)-(d) MAP estimators corresponding to models M1, M2, and M3. FibFlin

per iteration.673
exp:BUQ

4.2. Bayesian uncertainty quantification via posterior credible sets.674

4.2.1. Bayesian analysis and computation. As mentioned earlier, point estimators such675

as x̂MAP deliver accurate results but do not provide information about the posterior un-676

certainty of x. Given the uncertainty that is inherent to ill-posed and ill-conditioned inverse677

problems, it would be highly desirable to complement point estimators with posterior credibil-678

ity sets that indicate the region of the parameter space where most of the posterior probability679

mass of x lies. This is formalised in the Bayesian decision theory framework by computing680

credible regions [40]. A set Cα is a posterior credible region with confidence level (1− α) if681

P [x ∈ Cα|y] = 1− α.682

It is easy to check that for any α ∈ (0, 1) there are infinitely many regions of the parameter683

space that verify this property. Among all possible regions, the so-called highest posterior684
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density (HPD) region has minimum volume [40], and is given by685

C?α = {x : U(x) ≤ ηα}HPD (24)686

with ηα ∈ R chosen such that
∫
C?α
p(x|y)dx = 1 − α holds. This joint credible set has the687

important advantage that it can be enumerated by simply specifying the scalar value ηα.688

From a computation viewpoint, calculating credible sets for images is very challenging689

because it requires solving very high-dimensional integrals of the form
∫
C?α
p(x|y)dx. In this690

work, we use MYULA to approximate these integrals.691
tomographic˙imaging

4.2.2. Experiment 3: Tomographic image reconstruction.692

Experiment setup. The third experiment we consider is a tomographic image reconstruction693

problem with a total-variation prior. The goal is to recover the image x ∈ Rn from an694

incomplete and noisy set of Fourier measurements y = AFx + w, where F is the discrete695

Fourier transform operator, A is a tomographic sampling mask, and w ∼ N (0, σ2In). This696

inverse problem is ill-posed, resulting in significant uncertainty about the true value of x.697

Similarly to Experiment 1, in this experiment we regularise the problem and reduce the698

uncertainty about x by using a total-variation prior promoting piecewise regular images. The699

resulting posterior p(x|y) is700

π(x) ∝ exp
[
−‖y −AFx‖2/2σ2 − βTV (x)

]
.tomographic (25)701

with fixed hyper-parameters σ > 0 and β > 0 set manually by an expert. We note that this702

density is log-concave and MAP estimation can be performed efficiently by proximal convex703

optimisation.704

Figure 7 presents an experiment with the Shepp-Logan phantom magnetic resonance im-705

age (MRI) of size d = 128×128 pixels presented in Figure 7(a). Figure 7(b) shows a noisy to-706

mographic measurement y of this image, contaminated with Gaussian noise with σ = 7×10−2707

(to improve visibility Figure 7(b) shows the amplitude of the Fourier coefficients in logarithmic708

scale, with black regions representing unobserved coefficients). Notice from Figure 7(b) that709

only 15% of the original Fourier coefficients are observed. Moreover, Figure 7(c) shows the710

Bayesian estimate x̂MAP associated with (25) with hyper-parameter value β = 5.711

Bayesian uncertainty analysis. We now conduct a simple Bayesian uncertainty analysis to712

illustrate how posterior credible sets can inform decision-making. For illustration, suppose713

that the structure highlighted in red in Figure 7(c) is relevant from a clinical viewpoint714

because it provides important information for diagnosis or treatment related decision-making.715

Also, suppose that we first observe this structure in the Bayesian estimate x̂MAP and that,716

following on from this, we wish to explore the posterior uncertainty about x to learn more717

about the structure. In particular, here we conduct a simple analysis to show that there is718

lack of confidence regarding the presence of this structure in the true image (i.e., the structure719

could be an artefact). Precisely, this is achieved by computing the HDP credible region C?α720

and showing that it includes solutions that are essentially equivalent to x̂MAP except for the721

fact that they do not have the structure of interest.722

As alternative solution or “counter example” of x̂MAP , consider the image x† displayed in723

Figure 7(d). This image is equivalent to x̂MAP except for the fact that the structure of interest724
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(a) (b)

(d) (d)

Figure 7. Tomography experiment: (a) Shepp-Logan phantom image (128 × 128 pixels), (b) to-
mographic observation y (amplitude of Fourier coefficients in logarithmic scale), (c) MAP estimator
x̂MAP , (d) counter example image x†. FigMRI1

has been removed (we generated this image by modifying x̂MAP by applying a segmentation-725

inpainting process to replace the structure with the surrounding intensity level). Of course,726

clinicians observing x† images would potentially arrive to significantly different conclusions727

about the diagnosis or the treatment required. This test image scores U(x†) = 1.27× 104.728

To determine if x† belongs to C?α we used MYULA to generate n = 105 samples from729

(25), and calculated the HPD threshold ηα by estimating the (1 − α)-quantile of U(x) (we730

implemented the algorithm with f(x) = ‖y − AFx‖2/2σ2 and g(x) = βTV (x), with fixed731

parameters λ = L−1
f = 1×10−4 and γk = L−1

f /10 = 10−5, and by using Chambolle’s algorithm732

[7] to evaluate the proximal operator of the TV-norm). Fig. 8(a) shows the threshold values ηα733

for a range of values of α ∈ [0.01, 0.99]. Observe that U(x†) = 1.27× 104 is significantly lower734

than the values displayed in Fig. 8(a), indicating that the counter example image x† belongs735

to set of likely solutions to the inverse problem (e.g., at level 90% η0.10 = 2.34 × 104 hence736

x† ∈ C?0.10, for information U(x̂MAP ) = 1.21× 104). Based on this we conclude that, with the737
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current number of observations and noise level, it is not possible to assert confidently that the738

structure considered is present in the true image. Consequently, we would recommend that739

this data is not used as primary evidence to support decision-making about this structure.740

Generating the Monte Carlo samples and computing the HPD threshold values required 15741

minutes.742

Comparison with proximal MALA. We conclude this experiment by benchmarking our es-743

timations against Px-MALA, which targets (25) exactly (to obtain accurate estimates for744

Px-MALA we use n = 107 iterations with an adaptive time-step targeting an average accep-745

tance rate of order 45%). The HPD threshold values ηα obtained with Px-MALA are reported746

in Fig. 8(a), notice the approximation error of order of 3% due to MYULA’s estimation bias747

(this does not affect the conclusions of the experiment). With regards to computational per-748

formance, an efficiency analysis of the two algorithms indicates that for this model MYULA is749

approximately two orders of magnitude more efficient than Px-MALA in terms of integrated750

autocorrelation time (for illustration Fig. 8(b) compares the autocorrelation functions for751

slowest component5 of the MYULA and Px-MALA chains.752

(a) (b)

Figure 8. Tomography experiment: (a) HDP region thresholds ηα for MYULA and Px-MALA, (b)
chain autocorrelation functions for MYULA and Px-MALA. FigMRI3

ssec:exp4

4.2.3. Experiment 4: Sparse image deconvolution with an `1 prior.753

Experiment setup. The fourth experiment we consider is a sparse image deconvolution754

problem with a Laplace or `1 prior. Again, we aim to recover x ∈ Rn from y = Hx+w, where755

H is a circulant blurring matrix and w ∼ N (0, σ2In). We expect sparse solutions and use a756

Laplace prior related to the `1 norm of x. The resulting posterior p(x|y) is757

π(x) ∝ exp
[
−‖y −Hx‖2/2σ2 − β‖x‖1

]
.deconvolution (26)758

with fixed hyper-parameters σ > 0 and β > 0 set manually by an expert. Similarly to the759

previous experiments, we notice that this density is log-concave and MAP estimation can be760

5Again, the chain’s slowest component was identified by doing an approximate singular value decomposition
of the chain’s covariance matrix and then projecting the samples on the dominant eigenvector.
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performed efficiently by proximal convex optimisation.761

Figure 9 presents an experiment with a microscopy dataset of [49] related to high-resolution762

live cell imaging. Figure 9(a) shows an observation y of field of size 4µm × 4µm containing763

100 molecules. This low-resolution observation has been acquired with an instrument specific764

point-spread-function of size 16 × 16 pixels and a blurred signal-to-noise ratio of 20dB (see765

[49] for more details). Figure 9(b) shows the Bayesian estimate x̂MAP associated with (26)766

with hyper-parameter value α = 0.01 (notice that x̂MAP is displayed in logarithmic scale to767

improve visibility). Computing this estimate with a forward-backward splitting optimisation768

algorithm, which is algorithmically similar to MYULA, required approximately 5 minutes6.769

Bayesian uncertainty analysis. As second example of Bayesian uncertainty quantification,770

we use C?α to examine the uncertainty about the position of the group of molecules highlighted771

in red in Fig. 9, which we assume to be relevant for an application considered. Precisely, we772

used n = 105 samples generated with MYULA to compute C?α with α = 0.01 related to the773

99% confidence level, and obtained the threshold value η0.01 = 9.69× 104. Following on from774

this, to explore C?0.01 to quantify the uncertainty about the exact position of the molecules,775

we generated several surrogate test images by modifying x̂MAP by displacing the molecules in776

different directions until these surrogates exit C?0.01 (similarly to the previous experiment, the777

resulting empty space was filled by inpainting). Figure 9(c) shows the posterior uncertainty778

of the molecule positions (note that for visibility the figure focuses on the region of interest).779

This analysis reveals that the uncertainty at level 99% is of the order of ±5 pixels vertically780

and ±8 pixels horizontally, corresponding to ±78nm and ±125nm. It is worth mentioning781

that these results are in close in agreement with the experimental precision results reported in782

[49], which identified an average precision of the order of 80nm for the one hundred molecules.783

Comparison with proximal MALA. Again, we conclude the experiment by benchmarking our784

estimations against Px-MALA, which targets (26) exactly (to obtain accurate estimates for785

Px-MALA we use n = 2×107 iterations with an adaptive step-size targeting an acceptance rate786

of the order of 45%). Figure 9(d) compares the estimations of the threshold values ηα obtained787

with MYULA and Px-MALA for different values of α, indicating that the approximation errors788

of MYULA are of the order of 0.1%. Moreover, performance analyses based on the chains789

generated with each algorithm indicate that in this case MYULA is approximately one order790

of magnitude more computationally efficient than Px-MALA.791
sec:conclusion

5. Discussion and conclusion. This paper presented a new and general proximal MCMC792

methodology to perform Bayesian computation in log-concave models, with a focus on en-793

abling advanced Bayesian analyses for imaging inverse problems that are convex and not794

smooth, and currently solved mainly by convex optimisation. The methodology is based on a795

Moreau-Yoshida-type regularised approximation of the target density that is by construction796

is log-concave and Lipchitz continuously differentiable, and which can be addressed efficiently797

by using an unadjusted Langevin MCMC algorithm. We provided a detailed theoretical anal-798

ysis of this scheme, including asymptotic as well as non-asymptotic convergence results, and799

bounds on the convergence rate of the chains with explicit dependence on model dimension. In800

addition to being highly computational efficient and having a strong theoretical underpinning,801

6The computation of the MAP estimate with the SALSA [1] convex optimisation algorithm, which is faster
than the forward-backward splitting algorithm, required 2.3 seconds.

This manuscript is for review purposes only.



EFFICIENT BAYESIAN COMPUTATION BY PROXIMAL MARKOV CHAIN MONTE CARLO: WHEN
LANGEVIN MEETS MOREAU 27

Figures/Microscopy_obs.png

(a)

Figures/Microscopy_xmapLog.png

(b)

(c) (d)

Figure 9. Microscopy experiment: (a) Blurred image y (256× 256 pixels, 4µm× 4µm)),
(b) MAP estimate x̂MAP (logarithmic scale), (c) molecule position uncertainty quantification (vertical:
±78nm, horizontal ±125nm), (d) HDP region thresholds ηα for MYULA and Px-MALA. FigMicro

this new methodology is general and can be applied straightforwardly to most problems solved802

by proximal optimisation, particularly all problems solved by using forward-backward split-803

ting techniques. The proposed methodology was finally demonstrated with four experiments804

related to image deconvolution and tomographic reconstruction with total-variation and `1805

priors, where we conducted a range of challenging analyses related to model comparison and806

uncertainty quantification, and where we reported estimation accuracy and computational807

efficiency comparisons with the proximal Metropolis-adjusted Langevin algorithm.808

Furthremore, observe that the regularisation strategy used in this paper, based on the809

Moreau-Yoshida envelope, can also be applied straightforwardly to the Hamiltonian Monte810
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Carlo algorithm [17]. The theoretical and empirical properties of this algorithm are currently811

under investigation and will be reported separately.812

Finally, it is worth mentioning that MYULA can also be applied to some models that are813

not log-concave, for example multi-modal models where the smooth term f is not convex.814

In this case, the non-smooth term g must be associated with a proper prior to guarantee815

that the approximation πλ is proper. It is possible to derive non-asymptotic convergence816

results for these models; however, unlike the log-concave case, here the dependence w.r.t.817

to the dimension of the model is difficult to analyse (see [45] for details). The analysis of818

the performance of MYULA in non-convex settings is an important perspective for future819

work. Also, another important perspective for future work is to investigate ways in which820

the proposed regularisation approach, combined with an appropriate convex relaxation, could821

enable Langevin and Hamiltonian sampling in high-dimensional spaces that are discrete.822
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Appendix A. Proof of Proposition 1. We preface the proof by a Lemma.sec:proof-crefpr-meas962

lem:control-fun-convex-gene Lemma 4. Let g : Rd → (−∞,+∞] be a lower bounded, l.s.c convex function satisfying963

0 <
∫
Rd e−g(y)dy < +∞. Then there exists xg ∈ Rd, Rg, ρg > 0 such that for all x ∈ Rd,964

x 6∈ B(xg, Rg), g(x)− g(xg) ≥ ρg ‖x− xg‖.965

Proof. The proof is a simple extension of the one of [3, Theorem 2.2.2], where g is assumed966

to be continuously differentiable.967

We first show that g is finite on a non-empty open set of Rd. Note since
∫
Rd e−g(y)dy > 0,

the set {g <∞} can not be contained in a k-dimensional hyperplane, for k ∈ {0, · · · , d− 1}.
Then, there exists d+ 1 points {vi}0≤i≤d ⊂ {g <∞} such that the vectors {vi− v0}1≤i≤d are
linearly independent. Denote by co(v0, · · · , vd) the convex hull of {vi}0≤i≤d defined by

co(v0, · · · , vd) =

{
d∑
i=0

αivi |
d∑
i=0

αi = 1 ,∀i ∈ {0, · · · , d} , αi ≥ 0

}
.

Since g is convex and co(v0, · · · , vd) ⊂ {g <∞}, we have968

–eq:max˙conv˙hull˝ (27) sup
y∈co(v0,··· ,vd)

|g(y)| ≤Mco = max
i∈{0,··· ,d}

{|g(vi)|} .969

It follows from {vi}0≤i≤d ⊂ {g < ∞} and g is lower bounded that Mco is finite. Finally by970

[16, Lemma 1.2.1], co(v0, · · · , vd) has non empty interior.971

Consider now the set {g ≤ Mco + 1}. We prove by contradiction that it is a bounded972

subset of Rd. Assume that for all R ≥ 0, there exists xR ∈ {g ≤Mco + 1} and xR 6∈ B(v0, R).973

Then since {g ≤ Mco + 1} is convex, it contains the convex hull of {v0, · · · , vd, xR}. Since974
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co(v0, · · · , vd) has non empty interior, the volume of co(v0, · · · , vd, xR) grows at least linearly975

in R and the volume corresponding to {g ≤Mco + 1} is infinite taking the limit as R goes to976

∞. On the other hand, by assumption and since {v0, · · · , vd, xR} ⊂ {g ≤ Mco + 1}, we have977

using the Markov inequality978

Vol ({g ≤Mco + 1}) ≤ eMco+1

∫
{g≤Mco+1}

e−g(y)dy < +∞ ,979

which leads to a contradiction. Then there exists Rg ≥ 0, such that {g ≤Mco+1} ⊂ B(v0, Rg).980

For all x 6∈ B(v0, Rg), consider y = Rg(x− v0) ‖x− v0‖−1 + v0. Note that y 6∈ {g ≤Mco + 1},981

so g(y) ≥Mco + 1. Now using the convexity of g, we have for all x 6∈ B(v0, Rg),982

Mco + 1 ≤ g(y) ≤ Rg ‖x− v0‖−1 (g(x)− g(v0)) + g(v0) .983

Since g(v0) ≤Mco, we get984

(g(x)− g(v0)) ≥ R−1
g ‖x− v0‖985

and the proof is concluded setting xg = v0.986

Proof of Proposition 1. a) We first assume that H 2-(i) holds. By (6), U ≥ Uλ and987

therefore 0 <
∫
Rd e−U(y)dy <

∫
Rd e−U

λ(y)dy. We now prove e−g
λ

is integrable with respect to988

the Lebesgue measure, which implies y 7→ e−U
λ(y) is integrable as well since f is assumed to989

be lower bounded. By H1 and Lemma 4, there exist ρg > 0, xg ∈ Rd and M1 ∈ R such that990

for all x ∈ Rd, g(x)− g(xg) ≥M1 + ρg ‖x− xg‖. Thus, for all x ∈ Rd, we have by (6) and (9)991

gλ(x)− g(xg) = g(proxλg (x))− g(xg) + (2λ)−1
∥∥∥x− proxλg (x)

∥∥∥2
992

≥M1 + ρg

∥∥∥proxλg (x)− xg
∥∥∥+ (2λ)−1

∥∥∥x− proxλg (x)
∥∥∥2

993

≥M1 + inf
y∈Rd
{ρg ‖y − xg‖+ (2λ)−1 ‖x− y‖2} ≥M1 + hλ(x) ,–eq:second bound-finite-measure-MY˝ (28)994

995

where hλ(x) is the λ-Moreau Yosida envelope of h(x) = ρg ‖x− xg‖. By [32, Section 6.5.1],996

the proximal operator associated with the norm is the block soft thresholding given for all997

λ > 0 and x ∈ Rd \ {0} by proxλh(x) = max(0, 1−λ/ ‖x‖)x and proxλh(0) = 0. Therefore using998

again (6), it follows that there exists M2 ∈ R such that for all x ∈ Rd,999

hλ(x) ≥ ρg ‖x− xg‖+M2 .1000

Combining this inequality with (28) concludes the proof.1001

We now assume that H2-(ii) holds. First, we show that for all λ > 01002

–eq:unif˙prox˝ (29) sup
x∈Rd
{g(x)− gλ(x)} ≤ λ ‖g‖2Lip /2 ,1003

Indeed if this inequality holds, then for all x ∈ Rd, we have1004

f(x) + g(x)− λ ‖g‖2Lip /2 ≤ f(x) + gλ(x) .1005

This manuscript is for review purposes only.



EFFICIENT BAYESIAN COMPUTATION BY PROXIMAL MARKOV CHAIN MONTE CARLO: WHEN
LANGEVIN MEETS MOREAU 33

Therefore by assumption1006 ∫
Rd

e−U
λ(x)dx ≤ eλ‖g‖

2
Lip/2

∫
Rd

e−U(x)dx < +∞ .1007

We now prove (29). Using that g is Lipschitz, we have by (6), for all x ∈ Rd1008

g(x)− gλ(x) = g(x)− inf
y∈Rd

{
g(y) + (2λ)−1 ‖x− y‖2

}
= sup

y∈Rd

{
g(x)− g(y)− (2λ)−1 ‖x− y‖2

}
1009

≤ sup
y∈Rd

{
‖g‖Lip ‖x− y‖ − (2λ)−1 ‖x− y‖2

}
≤ λ ‖g‖2Lip /2 ,1010

1011

where we have used that the maximum of u 7→ au− bu2, for a, b ≥ 0, is given by a2/(4b).1012

b) This point is a straightforward consequence of (8) and (7).1013

c) Since π has also a density with respect to the Lebesgue measure and Uλ(x) ≤ U(x) for all1014

x ∈ Rd, we have for all λ > 01015

–eq:bound˙2˙TV˙MY˝ (30) ‖πλ − π‖TV =

∫
Rd

∣∣∣πλ(x)− π(x)
∣∣∣ dx ≤ 2Aλ ,1016

where Aλ =
∫
Rd{1− eg

λ(x)−g(x)}πλ(x)dx = 1−
{∫

Rd e−U
λ(x)dx

}−1 ∫
Rd e−U(x)dx. By (10), for1017

all x ∈ Rd, we get limλ↓0 ↑ Uλ(x) = U(x). We conclude by applying the monotone convergence1018

theorem.1019

d) Using that for all x ∈ Rd, gλ(x) ≤ g(x) and 1− e−u ≤ u for all u ≥ 0, (30) shows that1020

‖πλ − π‖TV ≤ 2

∫
Rd
{g(x)− gλ(x)}πλ(x)dx .1021

Then the proof follows from (29).1022

Appendix B. Model selection using improper priors. Model selection using impropersec:selection˙model˙case-proper-imp˙prior1023

priors can lead to tedious considerations [40]. Indeed, in that case the joint density of each1024

model is not defined. However, this difficulty can be avoided when the considered models share1025

the same improper prior distribution see [28]. Let M1, . . . ,MK be K alternative Bayesian1026

models having the same improper distribution with density p̃(x) on Rd and associated to the1027

family of likelihood functions pi(y|x) such that for all i ∈ {1, . . . ,K},
∫
Rd pi(y|x)p̃(x)dx < +∞.1028

The marginal posterior probabilities of M1, . . . ,MK are then defined by1029

–margPost˝ (31) p̃(Mj |y) =
p̃(y|Mj)K

−1∑K
k=1 p̃(y|Mk)K−1

, j ∈ {1, . . . ,K} ,1030

where for all j ∈ {1, . . . ,K},1031

p̃(y|Mj) =

∫
Rd
pi(y|x)p̃(x)dx .1032

Appendix C. Truncated harmonic mean estimator.HME1033

This manuscript is for review purposes only.
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sec:case-proper-prior

C.1. Case of proper prior distributions. Consider a positive probability density p on1034

Rd ×Rm for d,m ∈ N∗ of the form: p(x, y) = f(x, y)/
∫
Rd×Rm f(z, w)dzdw. Assume that f is1035

known but not the normalization constant of p. Here p plays the role of a joint distribution1036

of the data and the parameters. It can be defined if we take a proper prior distribution for1037

the parameters. Define for any bounded Borel set A ∈ B(Rd)1038

IA(f, y) =

∫
Rd
1A(x)

p(x|y)

f(x, y)
dx–harmonicmean˝–harmonicmean˝ (32)1039

=

∫
Rd
1A(x)

p(x|y)

p(x, y)
dx

/∫
Rd×Rm

f(z, w)dzdw .1040
1041

Since p(x|y) = p(x, y)/p(y), the following identity holds1042

–eq:relation˙harmonic˙mean˝ (33) p(y) = Vol(A)

{
IA(f, y)

∫
Rd×Rm

f(z, w)dzdw

}−1

.1043

For all y ∈ Rm and A ∈ B(Rd), we define the truncated harmonic mean estimator of IA(f, y)1044

by1045

–harmonicmean˙est˙1˝ (34) ÎA(f, y) =
n∑
k=1

1A(Xk)

f(Xk, y)
,1046

where (Xk)k≥1 is an ergodic Markov chain targeting p(x|y) to ensure that the defined estimator1047

almost surely converges to IA(f, y) given by (32).1048

Let p1, p2 be two positive distributions on Rd×Rm, associated with their two unormalized1049

versions f1, f2 : Rd × Rm → R+. We aim to estimate p1(y)/p2(y). By (33), we have1050

p1(y)

p2(y)
=

∫
Rd×Rm f2(z, w)dzdw∫
Rd×Rm f1(z, w)dzdw

IA(f2, y)

IA(f1, y)
1051

Using (34), we estimate this ratio by1052

p1(y)

p2(y)
≈ B̂1,2(y) =

∫
Rd×Rm f2(z, w)dzdw∫
Rd×Rm f1(z, w)dzdw

ÎA(f2, y)

ÎA(f1, y)
.1053

However, we need to compute the ratio
∫
Rd×Rm f2(z, w)dzdw/

∫
Rd×Rm f1(z, w)dzdw.1054

Assume that for i = 1, 2, fi(x, y) = hi(x, y)gi(x), for some measurable functions hi :1055

Rd ×Rm → R∗+, gi : Rd → R∗+ such that
∫
Rm hi(x, y)dy does not depend on x. Note that this1056

assumption holds in Section 4.1.3. We distinguish two cases:1057

1. If for i = 1, 2, gi is integrable, we get1058

B̂1,2(y) =

∫
Rd g2(z)dz∫
Rd g1(z)dz

ÎA(f2)

ÎA(f1)
.1059

In the case where the ratio
∫
Rd g2(z)dz/

∫
Rd g1(z)dz is unknown, such as with the priors1060

considered in the experiment reported in Section 4.1.3, we use a Monte Carlo algorithm1061
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such as MYULA or Px-MALA to compute it. Observe that this computation can be1062

performed offline when the ratio does not depend on the value of y.1063

2. If there exists a function g : Rd → R∗+ and two real numbers λ1, λ2 > 0 such that for1064

i = 1, 2, gi(x) = g(λix) for all x ∈ Rd, we get for all R > 01065
1066 ∫

Rd×Rm
1B(0,R)f2(z, w)dzdw/

∫
Rd×Rm

1B(0,λ1λ
−1
2 R)f1(z, w)dzdw1067

=

∫
Rd
1B(0,R)g2(z)dz/

∫
Rd
1B(0,λ1λ

−1
2 R)g1(z)dz = (λ1/λ2)d .1068

1069

Since for all a > 0 and i = 1, 2,1070 ∫
Rd×Rm

fi(z, w)dzdw = lim
R→+∞

∫
Rd×Rm

1B(0,aR)fi(z, w)dzdw ,1071

we get1072 ∫
Rd×Rm

f2(z, w)dzdw

/∫
Rd×Rm

f1(z, w)dzdw = (λ1/λ2)d .1073

sec:case-proper-imp˙prior

C.2. Case of improper prior distributions. Let f : Rd × Rm → R+ such that for all1074

y ∈ Rm,1075

–eq:def˙marginal˙improper˝ (35) p̃(y) =

∫
Rd
f(x, y)dx < +∞ .1076

Here, f plays the role of an improper joint density of the data and the parameters as the prior1077

distribution is improper. This setting corresponds to Section 4.1.2. Define for all y ∈ Rm1078

the conditional distribution on Rd ×Rm by p(x|y) = f(x, y)/p̃(y), where p̃ is defined by (35).1079

Then, define for any bounded Borel set A ∈ B(Rd)1080

–harmonicmean˙improper˝ (36) IA(f, y) =

∫
Rd
1A(x)

p(x|y)

f(x, y)
dx .1081

Then by (35), we get1082

–eq:relation˙harmonic˙mean˙improper˝ (37) p̃(y) = Vol(A)/IA(f, y) .1083

For all y ∈ Rm and A ∈ B(Rd), we define the truncated harmonic mean estimator of IA(f, y)1084

as in Appendix C.1 by (34).1085

Let now f1, f2 : Rd × Rm → R+, satisfying for all i = 1, 2 and y ∈ Rm, p̃i(y) =1086 ∫
Rd fi(x, y)dx < +∞. We aim to estimate p̃1(y)/p̃2(y). But by (37), we have1087

p̃1(y)

p̃2(y)
=
IA(f2, y)

IA(f1, y)
.1088

Using (36) and (34), we estimate this ratio by1089

p̃1(y)

p̃2(y)
≈ B̂1,2(y) =

ÎA(f2, y)

ÎA(f1, y)
.1090
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