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Abstract: We consider in this paper the problem of sampling a high-dimensional probability
distribution π having a density w.r.t. the Lebesgue measure on Rd, known up to a normaliza-
tion constant x 7→ π(x) = e−U(x)/

∫
Rd e−U(y)dy. Such problem naturally occurs for example in

Bayesian inference and machine learning. Under the assumption that U is continuously differen-
tiable, ∇U is globally Lipschitz and U is strongly convex, we obtain non-asymptotic bounds for
the convergence to stationarity in Wasserstein distance of order 2 and total variation distance
of the sampling method based on the Euler discretization of the Langevin stochastic differential
equation, for both constant and decreasing step sizes. The dependence on the dimension of the
state space of these bounds is explicit. The convergence of an appropriately weighted empirical
measure is also investigated and bounds for the mean square error and exponential deviation
inequality are reported for functions which are measurable and bounded. An illustration to
Bayesian inference for binary regression is presented to support our claims.
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1. Introduction

Interest for Bayesian inference methods for high-dimensional models has recently re-
ceived renewed attention often motivated by machine learning applications. Rather than
obtaining a point estimate, Bayesian methods attempt to sample the full posterior distri-
bution over the parameters and possibly latent variables which provides a way to assert
uncertainty in the model and prevents from overfitting [?], [?].

The problem can be formulated as follows. We aim at sampling a posterior distribu-
tion π on Rd, d ≥ 1, with density x 7→ e−U(x)/

∫
Rd e−U(y)dy w.r.t. the Lebesgue measure,

where U is continuously differentiable. The Langevin stochastic differential equation as-
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2 A. Durmus, É. Moulines

sociated with π is defined by:

dYt = −∇U(Yt)dt+
√

2dBt , (1)

where (Bt)t≥0 is a d-dimensional Brownian motion defined on the filtered probability
space (Ω,F , (Ft)t≥0,P), satisfying the usual conditions. Under mild technical conditions,
the Langevin diffusion admits π as its unique invariant distribution.

We study the sampling method based on the Euler-Maruyama discretization of (1).
This scheme defines the (possibly) non-homogeneous, discrete-time Markov chain (Xk)k≥0

given by
Xk+1 = Xk − γk+1∇U(Xk) +

√
2γk+1Zk+1 , (2)

where (Zk)k≥1 is an i.i.d. sequence of d-dimensional standard Gaussian random variables
and (γk)k≥1 is a sequence of step sizes, which can either be held constant or be chosen
to decrease to 0. This algorithm has been first proposed by [?] and [?] for molecular
dynamics applications. Then it has been popularized in machine learning by [?], [?] and
computational statistics by [?] and [?]. Following [?], in the sequel this method will be
referred to as the unadjusted Langevin algorithm (ULA). When the step sizes are held
constant, under appropriate conditions on U , the homogeneous Markov chain (Xk)k≥0

has a unique stationary distribution πγ , which in most cases differs from the distribution
π. It has been proposed in [?] and [?] to use a Metropolis-Hastings step at each iteration
to enforce reversibility w.r.t. π. This algorithm is referred to as the Metropolis adjusted
Langevin algorithm (MALA).

The ULA algorithm has already been studied in depth for constant step sizes in [?],
[?] and [?]. In particular, [?, Theorem 4] gives an asymptotic expansion for the weak
error between π and πγ . When limk→+∞ γk = 0 and

∑∞
k=1 γk =∞, weak convergence of

the weighted empirical distribution of the ULA algorithm has been established in [?], [?]
and [?].

Contrary to these reported works, we focus in this paper on non-asymptotic results.
These questions have been addressed previously in [?] and [?]. [?] establishes explicit
bounds on the total variation distance between the distribution of the n-th iterate of
the Markov chain defined in (2) and the target distribution π for fixed step size and a
strongly convex potential U . It is shown that if the initial distribution is an appropriately
chosen Gaussian or if a warm-start is used, the number of iterations required to get a
sample ε-close to π in total variation is of order O(d3ε−2) and O(dε−2) respectively.
The results of [?] were later sharpened in [?], using different technical arguments. In
particular, [?] shows that starting from a minimizer of U , the number of iterations to
get a sample ε-close from π in total variation is of order O(dε−2) and that therefore a
warm start is not necessary. [?] also extends the results of [?] to non-convex potentials
and non-increasing sequences of step sizes. It also establish some bounds between π and
πγ in V -norm which scale as γ1/2 as γ → 0.

In this work, we focus on the case where U is strongly convex. Compared to [?] and
[?], our contributions are as follows.

• We give explicit bounds between the distribution of the n-th iterate of the Markov
chain defined in (2) and the target distribution π in Wasserstein and total variation
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High-dim. Bayesian inference via the ULA Algorithm 3

distance for fixed and non-increasing step sizes. The obtained bounds improve those
reported in [?] and [?] for the total variation distance.

• For fixed step sizes (γk = γ for all k ≥ 0), we analyse both fixed horizon (the total
computational budget is fixed and the step size is chosen to minimize the upper
bound on the Wasserstein or total variation distance) and fixed precision (for a
fixed target precision, the number of iterations and the step size are optimized
simultaneously to meet this constraint). For a fixed precision ε > 0, we show that
the number of iterations n ≥ 0, for ULA to get a sample ε-close to π in Wasserstein
distance / total variation of order O(dε−2) or O(dε−1) (up to logarithmic terms),
depending on the smoothness of U . We show that our result is optimal (up to
logarithmic factors again) for d-dimensional Gaussian distribution. We show in the
finite horizon setting that if the total number of iterations is n, we may choose the
step size γ = γn > 0 such that the Wasserstein distance between the distribution
of the n-th iterate and π is bounded by O(n−1/2) and O(n−1) depending on the
smoothness of U .

• When limk→+∞ γk = 0 and
∑∞
k=1 γk =∞, we show that the marginal distribution

of the non-homogeneous Markov chain (Xk)k≥0 converges to the target distribution
π and provide explicit convergence bounds in the case γk = γ1k

−α, α ∈ (0, 1]. The
optimal rate of convergence derived from our bounds for the Wasserstein/total
variation distance is obtained for α = 1 with γ1 > 0 large enough. The convergence
rates we report, improve those given in [?].

• Quantitative estimates between π and πγ are obtained in Wasserstein and total
variation distance. The bound on the total variation distance between π and πγ we
derive improves the one reported in [?]. In particular, when U is smooth enough,
‖π − πγ‖TV scales as γ as γ → 0.

• Convergence of weighted empirical measure is studied through bounds on the mean
square error and exponential deviation of an estimator of

∫
Rd f(x)dπ(x), for func-

tions f : Rd → R which are either Lipschitz or bounded and measurable. When f
is Lipschitz, U is smooth enough and in the any-time setting, the optimal rate of
convergence for the MSE, using non-increasing sequences γk = γ1/k

α, is obtained
for α = 1/3 (which coincides with the rate used in [?] to derive a central limit
theorem). If the step size is held constant, we get that the number of iterations for
the mean square error to be smaller than ε > 0 is of order O(dε−4) or O(dε−3),
depending on the smoothness of U . The case where f is bounded and measurable is
an important result in Bayesian statistics to estimate credibility regions. For that
purpose, we study the convergence of the Euler-Maruyama discretization towards
its stationary distribution in total variation using a discrete time version of reflec-
tion coupling introduced in [?]. For fixed step size, the conclusion on the sufficient
number of iterations for the mean square error to be smaller than ε > 0 is the same
(up to logarithmic terms) as for Lipschitz functions.

In this paper, a special attention is paid to the dependency of the obtained bounds on
the dimension of the state space, since we are particularly interested in the applications
of this method to sampling in high-dimension.
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4 A. Durmus, É. Moulines

The paper is organized as follows. In Section 2, we study the convergence in the Wasser-
stein distance of order 2 of the Euler discretization for constant and decreasing step sizes.
In Section 3, we give non asymptotic bounds in total variation distance between the Eu-
ler discretization and π. This study is completed in Section 4 by non-asymptotic bounds
of convergence of the weighted empirical measure applied to functions which are either
Lipschitz or bounded and measurable. Our claims are supported in a Bayesian inference
for a binary regression model in Section 5. Finally in Section 6, some results of indepen-
dent interest, used in the proofs, on functional autoregressive models are gathered. Most
proofs and derivations are postponed and carried out in a supplementary paper [?].

Notations and conventions

Denote by B(Rd) the Borel σ-field of Rd, F(Rd) the set of all Borel measurable functions
on Rd and for f ∈ F(Rd), ‖f‖∞ = supx∈Rd |f(x)|. For µ a probability measure on
(Rd,B(Rd)) and f ∈ F(Rd) a µ-integrable function, denote by µ(f) the integral of f
w.r.t. µ. We say that ζ is a transference plan of µ and ν if it is a probability measure
on (Rd × Rd,B(Rd × Rd)) such that for all measurable set A of Rd, ζ(A × Rd) = µ(A)
and ζ(Rd × A) = ν(A). We denote by Π(µ, ν) the set of transference plans of µ and ν.
Furthermore, we say that a couple of Rd-random variables (X,Y ) is a coupling of µ and
ν if there exists ζ ∈ Π(µ, ν) such that (X,Y ) are distributed according to ζ. For two
probability measures µ and ν, we define the Wasserstein distance of order p ≥ 1 as

Wp(µ, ν) =

(
inf

ζ∈Π(µ,ν)

∫
Rd×Rd

‖x− y‖p dζ(x, y)

)1/p

.

By [?, Theorem 4.1], for all µ, ν probability measures on Rd, there exists a transfer-
ence plan ζ? ∈ Π(µ, ν) such that for any coupling (X,Y ) distributed according to ζ?,
Wp(µ, ν) = E[‖X − Y ‖p]1/p. This kind of transference plan (respectively coupling) will
be called an optimal transference plan (respectively optimal coupling) associated with
Wp. We denote by Pp(Rd) the set of probability measures with finite p-moment: for all
µ ∈ Pp(Rd),

∫
Rd ‖x‖p dµ(x) < +∞. By [?, Theorem 6.16], Pp(Rd) equipped with the

Wasserstein distance Wp of order p is a complete separable metric space.
Let f : Rd → R be a Lipschitz function, namely there exists C ≥ 0 such that for all

x, y ∈ Rd, |f(x)− f(y)| ≤ C ‖x− y‖. Then we denote

‖f‖Lip = inf{|f(x)− f(y)| ‖x− y‖−1 | x, y ∈ Rd, x 6= y} .

The Monge-Kantorovich theorem (see [?, Theorem 5.9]) implies that for all µ, ν proba-
bility measures on Rd,

W1(µ, ν) = sup

{∫
Rd

f(x)dµ(x)−
∫
Rd

f(x)dν(x) | f : Rd → R ; ‖f‖Lip ≤ 1

}
.

Denote by Fb(Rd) the set of all bounded Borel measurable functions on Rd. For f ∈
Fb(Rd) set osc(f) = supx,y∈Rd |f(x)− f(y)|. For two probability measures µ and ν on

imsart-bj ver. 2014/10/16 file: main.tex date: June 15, 2021
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Rd, the total variation distance distance between µ and ν is defined by ‖µ − ν‖TV =
supA∈B(Rd) |µ(A)− ν(A)|. By the Monge-Kantorovich theorem the total variation distance
between µ and ν can be written on the form:

‖µ− ν‖TV = inf
ζ∈Π(µ,ν)

∫
Rd×Rd

1Dc(x, y)dζ(x, y) ,

where D = {(x, y) ∈ Rd ×Rd |x = y}. For all x ∈ Rd and M > 0, we denote by B(x,M),
the ball centered at x of radius M . For a subset A ⊂ Rd, denote by Ac the complementary
of A. Let n ∈ N∗ and M be a n× n-matrix, then denote by MT the transpose of M and
‖M‖ the operator norm associated with M defined by ‖M‖ = sup‖x‖=1 ‖Mx‖. Define

the Frobenius norm associated with M by ‖M‖2F = Tr(MTM). Let n,m ∈ N∗ and
F : Rn → Rm be a twice continuously differentiable function. Denote by ∇F and ∇2F
the Jacobian and the Hessian of F respectively. Denote also by ~∆F the vector Laplacian
of F defined by: for all x ∈ Rd, ~∆F (x) is the vector of Rm such that for all i ∈ {1, · · · ,m},
the i-th component of ~∆F (x) equals to

∑d
j=1(∂2Fi/∂x

2
j )(x). In the sequel, we take the

convention that
∑n
p = 0 and

∏n
p = 1 for n, p ∈ N, n < p.

2. Non-asymptotic bounds in Wasserstein distance of
order 2 for ULA

Consider the following assumption on the potential U :

H1. The function U is continuously differentiable on Rd and gradient Lipschitz: there
exists L ≥ 0 such that for all x, y ∈ Rd, ‖∇U(x)−∇U(y)‖ ≤ L ‖x− y‖.

Under H1, for all x ∈ Rd by [?, Theorem 2.5, Theorem 2.9 Chapter 5] there exists
a unique strong solution (Yt)t≥0 to (1) with Y0 = x. Denote by (Pt)t≥0 the semi-group
associated with (1). It is well-known that π is its (unique) invariant probability. To get
geometric convergence of (Pt)t≥0 to π in Wasserstein distance of order 2, we make the
following additional assumption on the potential U .

H2. U is strongly convex, i.e. there exists m > 0 such that for all x, y ∈ Rd,

U(y) ≥ U(x) + 〈∇U(x), y − x〉+ (m/2) ‖x− y‖2 .

Under H2, [?, Theorem 2.1.8] shows that U has a unique minimizer x? ∈ Rd. We
briefly summarize some background material on the stability and the convergence in W2

of the overdamped Langevin diffusion under H1 and H2. Most of the statements in
Proposition 1 are known and are recalled here for ease of references; see e.g. [?].

Proposition 1. Assume H1 and H2.
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6 A. Durmus, É. Moulines

(i) For all t ≥ 0 and x ∈ Rd,∫
Rd

‖y − x?‖2 Pt(x, dy) ≤ ‖x− x?‖2 e−2mt + (d/m)(1− e−2mt) .

(ii) The stationary distribution π satisfies
∫
Rd ‖x− x?‖2 π(dx) ≤ d/m.

(iii) For any x, y ∈ Rd and t > 0, W2(δxPt, δyPt) ≤ e−mt ‖x− y‖.
(iv) For any x ∈ Rd and t > 0, W2(δxPt, π) ≤ e−mt

{
‖x− x?‖+ (d/m)1/2

}
.

Proof. The proof is given in the supplementary document [?, ??].

Note that the convergence rate in Proposition 1-(iv) does not depend on the dimension.
Let (γk)k≥1 be a sequence of positive and non-increasing step sizes and for n, ` ∈ N,
denote by

Γn,` =
∑̀
k=n

γk , Γn = Γ1,n . (3)

For γ > 0, consider the Markov kernel Rγ given for all A ∈ B(Rd) and x ∈ Rd by

Rγ(x,A) =

∫
A

(4πγ)−d/2 exp
(
−(4γ)−1 ‖y − x+ γ∇U(x)‖2

)
dy . (4)

The process (Xk)k≥0 given in (2) is an inhomogeneous Markov chain with respect to the
family of Markov kernels (Rγk)k≥1. For `, n ∈ N∗, ` ≥ n, define

Qn,`γ = Rγn · · ·Rγ` , Qnγ = Q1,n
γ (5)

with the convention that for n, ` ∈ N, ` < n, Qn,`γ is the identity operator.

We first derive a Foster-Lyapunov drift condition for Qn,`γ , `, n ∈ N∗, ` ≥ n. Set

κ =
2mL

m+ L
(6)

where m and L are defined in H1

Proposition 2. Assume H1 and H2.

(i) Let (γk)k≥1 be a non-increasing sequence with γ1 ≤ 2/(m+L). Let x? be the unique
minimizer of U . Then for all x ∈ Rd and n, ` ∈ N∗,∫

Rd

‖y − x?‖2Qn,`γ (x, dy) ≤ %n,`(x) ,

where %n,`(x) is given by

%n,`(x) =
∏̀
k=n

(1− κγk) ‖x− x?‖2 + 2dκ−1

{
1− κ−1

∏̀
i=n

(1− κγi)

}
, (7)
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(ii) For any γ ∈ (0, 2/(m+ L)], Rγ has a unique stationary distribution πγ and∫
Rd

‖x− x?‖2 πγ(dx) ≤ 2dκ−1 .

Proof. The proof is postponed to [?, ??].

We now proceed to establish that Qnγ is a strict contraction in W2 for any n ≥ 1. This
result implies the geometric convergence of the sequence (δxR

n
γ )n≥1 to πγ in W2 for all

x ∈ Rd. Note that the convergence rate again does not depend on the dimension.

Proposition 3. Assume H1 and H2. Then,

(i) Let (γk)k≥1 be a non-increasing sequence with γ1 ≤ 2/(m + L). For all x, y ∈ Rd
and ` ≥ n ≥ 1,

W2(δxQ
n,`
γ , δyQ

n,`
γ ) ≤

{∏̀
k=n

(1− κγk)

}1/2

‖x− y‖ .

(ii) For any γ ∈ (0, 2/(m+ L)), for all x ∈ Rd and n ≥ 1,

W2(δxR
n
γ , πγ) ≤ (1− κγ)n/2

{
‖x− x?‖2 + 2κ−1d

}1/2

.

Proof. The proof is postponed to [?, ??]

Corollary 4. Assume H 1 and H 2. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 2/(m+ L). Then for all Lipschitz functions f : Rd → R and ` ≥ n ≥ 1, Qn,`γ f is a

Lipschitz function with ‖Qn,`γ f‖Lip ≤
∏`
k=n(1− κγk)1/2‖f‖Lip.

Proof. The proof follows from Proposition 3-(i) using∣∣Qn,`γ f(y)−Qn,`γ f(z)
∣∣ ≤ ‖f‖LipW2(δyQ

n,`
γ , δzQ

n,`
γ ) .

We now proceed to establish explicit bounds for W2(δxQ
n
γ , π), with x ∈ Rd.

Theorem 5. Assume H 1 and H 2. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 1/(m+ L). Then for all x ∈ Rd and n ≥ 1,

W 2
2 (δxQ

n
γ , π) ≤ u(1)

n (γ)
{
‖x− x?‖2 + d/m

}
+ u(2)

n (γ) ,

where

u(1)
n (γ) = 2

n∏
k=1

(1− κγk/2) (8)
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8 A. Durmus, É. Moulines

κ is defined in (6) and

u(2)
n (γ) = L2d

n∑
i=1

[
γ2
i

{
κ−1 + γi

}{
2 +

L2γi
m

+
L2γ2

i

6

} n∏
k=i+1

(1− κγk/2)

]
. (9)

Proof. The proof is postponed to [?, ??].

Corollary 6. Assume H 1 and H 2. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 1/(m + L). Assume that limk→∞ γk = 0 and limn→+∞ Γn = +∞. Then for all
x ∈ Rd, limn→∞W2(δxQ

n
γ , π) = 0.

Proof. The proof is postponed to [?, ??].

In the case of constant step sizes γk = γ for all k ≥ 1, we can deduce from Theorem 5,
a bound between π and the stationary distribution πγ of Rγ .

Corollary 7. Assume H1 and H2. Let (γk)k≥1 be a constant sequence γk = γ for all
k ≥ 1 with γ ≤ 1/(m+ L). Then

W 2
2 (π, πγ) ≤ 2κ−1L2γ

{
κ−1 + γ

}
(2d+ dL2γ/m+ dL2γ2/6) .

Proof. Since by Proposition 3, for all x ∈ Rd, (δxR
n
γ )n≥0 converges to πγ as n→∞ in

(P2(Rd),W2), the proof then follows from Theorem 5 and [?, ??] applied with ` = 1.

We can improve the bound provided by Theorem 5 under additional regularity as-
sumptions on the potential U .

H3. The potential U is three times continuously differentiable and there exists L̃ such
that for all x, y ∈ Rd,

∥∥∇2U(x)−∇2U(y)
∥∥ ≤ L̃ ‖x− y‖.

Note that under H1 and H3, we have that for all x, y ∈ Rd,∥∥∇2U(x)y
∥∥ ≤ L ‖y‖ , ∥∥∥~∆(∇U)(x)

∥∥∥2

≤ d2L̃2 . (10)

Theorem 8. Assume H1, H2 and H3. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 1/(m+ L). Then for all x ∈ Rd and n ≥ 1,

W 2
2 (δxQ

n
γ , π) ≤ u(1)

n (γ)
{
‖x− x?‖2 + d/m

}
+ u(3)

n (γ) ,

where u
(1)
n is given by (8), κ in (6) and

u(3)
n (γ) =

n∑
i=1

[
dγ3
i

{
2L2 + γiL

4
(γi

6
+m−1

)
+ κ−1

(
4dL̃2

3
+ γiL

4 +
4L4

3m

)}

×
n∏

k=i+1

(
1− κγk

2

)]
. (11)
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Proof. The proof is postponed to [?, ??].

If γk = γ for all k ≥ 1, we can deduce from Theorem 8, a sharper bound between π
and the stationary distribution πγ of Rγ .

Corollary 9. Assume H1, H2 and H3. Let (γk)k≥1 be a constant sequence γk = γ for
all k ≥ 1 with γ ≤ 1/(m+ L). Then

W 2
2 (π, πγ) ≤ 2κ−1dγ2

{
2L2 + γL4(γ/6 +m−1) + κ−1

(
4dL̃2

3
+ γL4 +

4L4

3m

)}
.

Proof. The proof follows the same line as the proof of Corollary 7 and is omitted.

Using Proposition 3-(ii) and Corollary 6 or Corollary 9, given ε > 0, we determine the
number of iterations nε and an associated step size γε to ensure that W2(δx?Rnγε , π) ≤ ε
for all n ≥ nε. The precise expression of nε directly computed using Theorem 5 and
Theorem 8 are also given in [?, ??-??]. Dependencies in dimension d and precision ε
of nε are reported in Table 1. Under H1 and H2, the complexity matches the results
reported in [?] for the total variation distance. Under H3, the dependency in the precision
ε can be improved. If L̃ = 0 (for example for non-degenerate d-dimensional Gaussian
distributions), then the dependency in d given by Theorem 8 is of order O(d1/2 log(d)).

In a recent work [?] (based on a previous version of this paper), an improvement of
the proof of Theorem 5 has been proposed for constant step size. Whereas the constants
are sharper, dependency in dimension d and precision ε > 0 is the same (first line of
Table 1).

Parameter d, ε
Theorem 5 and Proposition 3-(ii) O(d log(d)ε−2 |log(ε)|)
Theorem 8 and Proposition 3-(ii) O(d log(d)ε−1 |log(ε)|)

Table 1. Dependencies of the number of iterations nε to get W2(δx?Rnε
γε , π) ≤ ε

Under H1 and H2, by Theorem 5, in the finite horizon setting, then for any n ≥ 1,
we may choose a step size γ = γn > 0 such that W 2

2 (δx?Rnγn , π) = O(log(n)/n) and
W 2

2 (δx?Rnγn , π) ≤ O(log(n)/n)2 if H3 holds by Theorem 8. The precise statement of
these results are given by [?, ??-??] in [?, ??-??].

For simplicity, consider sequences (γk)k≥1 defined for all k ≥ 1 by γk = γ1/k
α, for

γ1 < 1/(m + L) and α ∈ (0, 1). Then for n ≥ 1, u
(1)
n = O(e−κΓn/2), u

(2)
n = dO(n−α)

and u
(3)
n = d2O(n−2α) (see [?, ??-??] for details). For γk = γ1/k, we need to extend

Theorem 5 and Theorem 8 to non-increasing sequence such that there exists n1 ≥ 1 such
that γn1 < 1/(m+L). It is done in [?, ?? in ??]. Using this result in [?, ??], we get that
under H1 and H2, that W 2

2 (δx?Qnγ , π) = O(n−1) for γ1 > 2κ−1. If in addition H3 holds,
we have W 2

2 (δx?Qnγ , π) = O(n−1) for γ1 > 4κ−1. However, note that the constants are
exponential in γ1. The conclusions of this discussion are summarized in Table 2.
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10 A. Durmus, É. Moulines

Note that these rates are explicit compared to those reported in [?, Proposition 3]. In
addition, two regimes can be observed as in stochastic approximation in the case α = 1.

α ∈ (0, 1) α = 1
Theorem 5 dO(n−α) dO(n−1) for γ1 > 2κ−1 see [?, ??]
Theorem 8 d2O(n−2α) d2O(n−2) for γ1 > 4κ−1 see [?, ??]

Table 2. Order of convergence of W 2
2 (δx?Qnγ , π) for γk = γ1/k

α

Details and further discussions are included in [?, ?? -??]. In particular, the depen-
dencies of the obtained bounds with respect to the constants m and L which appear in
H1, H2 are evidenced.

3. Quantitative bounds in total variation distance

We develop in this section quantitative bounds in total variation distance. For Bayesian
inference application, total variation bounds are useful for computing highest posterior
density (HPD) credible regions and intervals. For computing such bounds we will use the
results of Section 2 combined with the regularizing property of the semigroup (Pt)t≥0.

The first key result consists in upper-bounding the total variation distance ‖µPt −
νPt‖TV for µ, ν ∈ P1(Rd). To that purpose, we use the coupling by reflection; see [?,
Section 3] or [?, Example 3.7] for its construction, and [?, ?, ?] for applications. It is
defined as the unique strong solution (Xt,Yt)t≥0 of the SDE:{

dXt = −∇U(Xt)dt+
√

2dBdt
dYt = −∇U(Yt)dt+

√
2(Id−2ete

T
t )dBdt ,

where et = e(Xt − Yt) (12)

with X0 = x, Y0 = y, e(z) = z/ ‖z‖ for z 6= 0 and e(0) = 0 otherwise. Define the coupling
time Tc = inf{s ≥ 0 | Xs = Ys}. By construction Xt = Yt for t ≥ Tc. Using Levy’s

characterization, B̃dt =
∫ t

0
(Id−2ese

T
s )dBds is a d-dimensional Brownian motion, therefore

(Xt)t≥0 and (Yt)t≥0 are weak solutions to (1) started at x and y respectively. Then by
Lindvall’s inequality, for all t > 0 we have ‖Pt(x, ·)− Pt(y, ·)‖TV ≤ P (Xt 6= Yt).

Denote by Φ the cumulative distribution function of the standard normal distribution.
For a > 0, define χa for all t ≥ 0 by

χa(t) =
√

(4/a)(e2at − 1) . (13)

Theorem 10. Assume H1 and H2.

(i) For any x, y ∈ Rd and t > 0, it holds

‖Pt(x, ·)− Pt(y, ·)‖TV ≤ 1− 2Φ{−‖x− y‖ /χm(t)} ,

where χm is defined in (13) and m is the strong convexity constant.
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High-dim. Bayesian inference via the ULA Algorithm 11

(ii) For any µ, ν ∈ P1(Rd) and t > 0,

‖µPt − νPt‖TV ≤ 21/2 W1(µ, ν)
/

(π
1/2χm(t)) .

(iii) For any x ∈ Rd and t ≥ 0,

‖π − δxPt‖TV ≤ 21/2
{

(d/m)1/2 + ‖x− x?‖
}/

(π
1/2χm(t)) .

Proof. (i) Denote for t > 0, B1
t =

∫ t
0
1{s<Tc}e

T
s dBds . We compute a bound for the

coupling time. On {t < Tc}, by (12), we get

d{Xt − Yt} = −{∇U(Xt)−∇U(Yt)} dt+ 2
√

2etdB
1
t .

Itô’s formula on {t < Tc} yields

emt ‖Xt − Yt‖ = ‖x− y‖+m

∫ t

0

ems ‖Xs − Ys‖ ds

−
∫ t

0

ems 〈∇U(Xs)−∇U(Ys), es〉ds+ 2
√

2

∫ t

0

emsdB1
s .

Then by H2, we obtain on {t < Tc}, ‖Xt − Yt‖ ≤ Ut, where (Ut)t∈(0,Tc) is the one-
dimensional Ornstein-Uhlenbeck process defined by

Ut = e−mt ‖x− y‖+ 2
√

2

∫ t

0

em(s−t)dB1
s .

Therefore, for all x, y ∈ Rd and t ≥ 0, we get

P(Tc > t) ≤ P
(

min
0≤s≤t

Us > 0

)
.

Finally the proof follows from [?, Formula 2.0.2, page 542]. For completeness, this formula
is given in [?, ??].

(ii) Let µ, ν ∈ P1(Rd) and ξ ∈ Π(µ, ν) be an optimal transference plan for (µ, ν)
w.r.t. W1. Since for all s > 0, 1/2−Φ(−s) ≤ (2π)−1/2s, (i) implies that for all x, y ∈ Rd
and t > 0,

‖µPt − νPt‖TV ≤ 2

∫
Rd×Rd

‖x− y‖
(2π)1/2χm(t)

dξ(x, y) ,

which is the desired result.
(iii) The proof is a straightforward consequence of (ii) and Proposition 1-(iv).

Since for all s > 0, s ≤ es− 1, note that Theorem 10-(ii) implies that for all t > 0 and
µ, ν ∈ P1(Rd),

‖µPt − νPt‖TV ≤ (4πt)−1/2W1(µ, ν) . (14)
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12 A. Durmus, É. Moulines

Therefore for all bounded measurable function f , Ptf is a Lipschitz function for all t > 0
with Lipshitz constant

‖Ptf‖Lip ≤ (4πt)−1/2osc(f) . (15)

We will now study the contraction of Qn,`γ in total variation for non-increasing se-
quences (γk)k≥1. Strikingly, we are able to derive results which closely parallel Theo-
rem 10. The proof is nevertheless completely different because the reflection coupling is
no longer applicable in discrete time. We use a coupling construction inspired by the
method of [?, Section 3.3] for Gaussian random walks. This construction has been used
in [?] to establish convergence of homogeneous Markov chain in Wasserstein distances
using different method of proof. So as not to interrupt the argument, this construction
is postponed to Section 6.

For all n, ` ≥ 1, n < ` and (γk)k≥1 a non-increasing sequence denote by

Λn,`(γ) = κ−1

∏̀
j=n

(1− κγj)−1 − 1

 , Λ`(γ) = Λ1,`(γ) . (16)

Theorem 11. Assume H1 and H2.

(i) Let (γk)k≥1 be a non-increasing sequence satisfying γ1 ≤ 2/(m + L). Then for all
x, y ∈ Rd and n, ` ∈ N∗, n < `, we have

‖δxQn,`γ − δyQn,`γ ‖TV ≤ 1− 2Φ{−‖x− y‖ /{8 Λn,`(γ)}1/2} .

(ii) Let (γk)k≥1 be a non-increasing sequence satisfying γ1 ≤ 2/(m+ L). Then, for all
µ, ν ∈ P1(Rd) and `, n ∈ N∗, n < `, we have

‖µQn,`γ − νQn,`γ ‖TV ≤ {4πΛn,`(γ)}−1/2W1(µ, ν) .

(iii) Let γ ∈ (0, 2/(m+ L)]. Then for any x ∈ Rd and n ≥ 1,

‖πγ−δxRnγ‖TV ≤ {4πκ(1−(1−κγ)n/2)}−1/2(1−κγ)n/2
{
‖x− x?‖+ (2κ−1d)1/2

}
.

Proof. (i) By (??) for all x, y and k ≥ 1, we have

‖x− γk∇U(x)− y + γk∇U(y)‖ ≤ (1− κγk)1/2 ‖x− y‖ .

Let n, ` ≥ 1, n < `, then applying Theorem 19 in Section 6, we get

‖δxQn,`γ − δyQn,`γ ‖TV ≤ 1− 2Φ
(
−‖x− y‖ /{8 Λn,`(γ)}1/2

)
,

(ii) Let f ∈ Fb(Rd) and ` > n ≥ 1. For all x, y ∈ Rd by definition of the total variation
distance and (i), we have∣∣Qn,`γ f(x)−Qn,`γ f(y)

∣∣ ≤ osc(f)‖δxQn,`γ − δyQn,`γ ‖TV

≤ osc(f)
{

1− 2Φ
(
−‖x− y‖ /{8 Λn,`(γ)}1/2

)}
,

Using that for all s > 0, 1/2−Φ(−s) ≤ (2π)−1/2s concludes the proof.
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High-dim. Bayesian inference via the ULA Algorithm 13

(iii) The proof follows from (iii), the bound for all s > 0, 1/2 − Φ(−s) ≤ (2π)−1/2s
and Proposition 2-(ii).

We can combine Theorem 5 or Theorem 8 with Theorem 10 and Theorem 11 to
obtain explicit bounds in total variation between the Euler-Maruyama discretization and
the target distribution π. To that purpose, we use the following decomposition, for all
non-increasing sequence (γk)k≥1, initial point x ∈ Rd and ` ≥ 0:

‖π − δxQ`γ‖TV ≤ ‖π − δxPΓ`
‖TV + ‖δxPΓ`

− δxQ`γ‖TV . (17)

The first term is dealt with Theorem 10-(iii). It remains to bound the second term in (17).
Since we will use Theorem 5 and Theorem 8, we have two different results depending on
the assumptions on U . Define for all x ∈ Rd and n, p ∈ N,

ϑ(1)
n,p(x) = L2

n∑
i=1

γ2
i

n∏
k=i+1

(1− κγk/2)
[{
κ−1 + γi

}
(2d+ dL2γ2

i /6) (18)

+L2γiδi,n,p(x)
{
κ−1 + γi

}]

ϑ(2)
n,p(x) =

n∑
i=1

γ3
i

n∏
k=i+1

(1− κγk/2)
[
L4δi,n,p(x)(4κ−1/3 + γn+1) (19)

+d
{

2L2 + 4κ−1(dL̃2/3 + γn+1L
4/4) + γ2

n+1L
4/6
}]

,

where
δi,n,p(x) = e−2mΓi−1%n,p(x) + (1− e−2mΓi−1)(d/m) ,

and %n,p(x) is given by (7).

Theorem 12. Assume H 1 and H 2. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 1/(m+ L). Then for all x ∈ Rd and `, n ∈ N∗, ` > n,

‖δxPΓ`
− δxQ`γ‖TV ≤ (ϑn(x)/(4πΓn+1,`))

1/2

+ 2−3/2L

( ∑̀
k=n+1

{
(γ3
kL

2/3)%1,k−1(x) + dγ2
k

})1/2

, (20)

where %1,n(x) is defined by (7), ϑn(x) is equal to ϑ
(2)
n,0(x) given by (19), if H3 holds, and

to ϑ
(1)
n,0(x) given by (18) otherwise.

Proof. The proof is postponed to [?, ??].
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14 A. Durmus, É. Moulines

Consider the case of decreasing step sizes of the form γk = γ1/k
α for k ≥ 1 and

α ∈ (0, 1). Under H1 and H2, setting n = `− b`αc, ` ∈ N∗, we have for i = 2, 3,

lim
n→+∞

Γn,` = 1 ,
∑̀

k=n+1

γik ≤ γin+1(`− n) ≤ γi1 b`αc /(`− b`αc)iα . (21)

In addition, by Table 2, ϑn(x) = dO(`−α). Therefore combining this result and (21)
in the bound of Theorem 12, we get that ‖δx?Q`γ − π‖TV = d1/2O(`−α/2). In the case
γk = γ1/k

α for k ≥ 1 and α = 1, setting n = `−b`/2c, ` ∈ N∗, ` > 2, we have for i = 2, 3,

lim
n→+∞

Γn,` = 1/2 ,
∑̀

k=n+1

γik ≤ γin+1(`− n) ≤ γi1/(`/2− 1) . (22)

In addition, by Table 2, ϑn(x) = dO(`−1), for γ1 > 2κ−1. Therefore combining this result
and (22) in the bound of Theorem 12, we get that ‖δx?Q`γ − π‖TV = d1/2O(`−1/2).

Note that these rates for γk = γ1/k
α, k ∈ N∗ and α ∈ (0, 1] improve those obtained in

[?, Proposition 3], for potentials satisfying H1 but not necessarily convex since [?, Propo-
sition 3] only requires the additional assumption that (Pt)t≥0 is geometrically ergodic in
total variation.

Assume H1, H2 and H3 and that γk = γ1/k
α for k ≥ 1 and α ∈ (0, 1]. setting

n = `−
⌊
`α/2

⌋
, ` ∈ N∗, we have for i = 2, 3,

lim
n→+∞

Γn,` = 1 ,
∑̀

k=n+1

γik ≤ γin+1(`− n) ≤ γi1b`α/2c/(`− b`α/2c)iα . (23)

In addition (see Table 2) ϑn(x) = d2O(`−2α), with γ1 > 4κ−1 in the case α = 1. Therefore
combining this result and (23) in the bound of Theorem 12, we get that ‖δx?Q`γ−π‖TV =

d1/2O(`−3α/4). These discussions are summarized in Table 3.

α ∈ (0, 1) α = 1

Theorem 5 d1/2O(`−α/2) d1/2O(`−1/2) for γ1 > 2κ−1

Theorem 8 d1/2O(`−3α/4) d1/2O(`−3/4) for γ1 > 4κ−1

Table 3. Order of convergence of ‖δx?Q`γ − π‖TV for γk = γ1/k
α based on Theorem 12

When γk = γ ∈ (0, 1/(m+ L)) for all k ≥ 1, under H1 and H2, for ` >
⌈
γ−1

⌉
choosing

n = `−
⌈
γ−1

⌉
implies that (see the supplementary document [?, ??])

‖δxR`γ − δxP`γ‖TV ≤ (4π)−1/2
[
γD1(γ, d) + γ3D2(γ)D3(γ, d, x)

]1/2
+ D4(γ, d, x) , (24)
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High-dim. Bayesian inference via the ULA Algorithm 15

where

D1(γ, d) = 2L2κ−1
(
κ−1 + γ

) (
2d+ L2γ2/6

)
,D2(γ) = L4

(
κ−1 + γ

)
(25)

D3(γ, d, x) =
{

(`−
⌈
γ−1

⌉
)e−mγ(`−dγ−1e−1) ‖x− x?‖2 + 2d(κγm)−1

}
D4(γ, d, x) = 2−3/2L [dγ(1 + γ)

+(L2γ3/3)
{

(1 + γ−1)(1− κγ)`−dγ
−1e ‖x− x?‖2 + 2(1 + γ)κ−1d

}]1/2
.

Using this bound and Theorem 10-(iii), the number of iterations `ε > 0 to achieve
‖δx?R`εγε − π‖TV ≤ ε is of order d log(d)O(|log(ε)| ε−2) (the proper choice of the step size
γε is given in Table 5). This result is the same than the one obtained in [?].

Letting ` go to infinity in (24) we get the following result.

Corollary 13. Assume H1 and H2. Let γ ∈ (0, 1/(m+ L)]. Then it holds

‖πγ − π‖TV ≤ 2−3/2L
[
dγ(1 + γ) + 2(L2γ3/3)(1 + γ)κ−1d

]1/2
+ (4π)−1/2

[
γD1(γ, d) + 2dγ2D2(γ)(κm)−1

]1/2
,

where D1(γ) and D2(γ) are given in (25).

Note that Corollary 13 shows that ‖πγ − π‖V 1/2 ≤ C1γ
1/2 for some constant C1 ≥ 0.

Under H1 and the assumption and Rγ and (Pt)t≥0 are V -uniformly geometrically ergodic,
[?, Theorem 10] establishes that ‖πγ − π‖V 1/2 ≤ C2γ

1/2 for some explicit constant C2 ≥
0. In the case where U satisfies H2, then we can take V = ‖·‖2 and C2 is very similar to
C1. In particular both C1 and C2 are of order d1/2.

However, if H3 holds, for constant step sizes, we can improve with respect to the step
size γ, the bounds given by Corollary 13.

Theorem 14. Assume H1, H2 and H3. Let γ ∈ (0, 1/(m+ L)]. Then it holds

‖πγ − π‖TV ≤ (4π)−1/2
{
γ2E1(γ, d) + 2dγ2E2(γ)/(κm)

}1/2

+ (4π)−1/2
⌈
log
(
γ−1

)
/ log(2)

⌉ {
γ2E1(γ, d) + γ2E2(γ)(2κ−1d+ d/m)

}1/2

+ 2−3/2L
{

2dγ3L2/(3κ) + dγ2
}1/2

,

where E1(γ, d) and E2(γ) are defined by

E1(γ, d) = 2dκ−1
{

2L2 + 4κ−1(dL̃2/3 + γL4/4) + γ2L4/6
}

E2(γ) = L4(4κ−1/3 + γ) .

Proof. The proof is postponed to [?, ??].
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16 A. Durmus, É. Moulines

Note that the bound provided by Theorem 14 is of order dO(γ |log(γ)|), improving
the dependency given by Corollary 13 and [?, Theorem 10], with respect to the step size
γ, but Theorem 14 requires that H3 holds contrary to Corollary 13 and [?, Theorem 10].
Furthermore when L̃ = 0, this bound given by Theorem 14 is of order d1/2O(γ |log(γ)|)
and is sharp up to a logarithmic factor. Indeed, assume that π is the d-dimensional
standard Gaussian distribution. In such case, the ULA sequence (Xk)k≥0 is the autore-
gressive process given for all k ≥ 0 by Xk+1 = (1 − γ)Xk +

√
2γZk+1. For γ ∈ (0, 1),

this sequence has a stationary distribution πγ , which is a d-dimensional Gaussian distri-
bution with zero-mean and covariance matrix σ2

γ Id, with σ2
γ = (1 − γ/2)−1. Therefore,

using [?, Lemma 4.9] (or the Pinsker inequality), we get the following upper bound:
‖π − πγ‖TV ≤ Cd1/2|σ2

γ − 1| = Cd1/2γ/2, where C is a universal constant.
We can also for a precision target ε > 0 choose γε > 0 and the number of iterations

nε > 0 to get ‖δxRnε
γε −π‖TV ≤ ε. By Theorem 10-(iii), Theorem 11-(iii) and Theorem 14,

a sufficient number of iterations `ε is of order d log2(d)O(ε−1 log2(ε)) for a well chosen
step size γε. This result improves the conclusion of [?] and Corollary 13 with respect to
the precision parameter ε, which provides an upper bound of the number of iterations
of order d log(d)O(ε−2 log2(ε)). We can also compare our reported upper bound with
the one obtained for the d-dimensional standard Gaussian distribution. If the initial
distribution is the Dirac mass at zero (the minimum of the potential U(x) = ‖x‖2 /2)
and γ ∈ (0, 1), the distribution of the ULA sequence after n iterations is zero-mean
Gaussian with covariance (1− (1−γ)2(n+1))/(1−γ/2) Id. If we use [?, Lemma 4.9] again,
we get for γ ∈ (0, 1),

‖δ0Rnγ − π‖TV ≤ Cd1/2γ|1− 2γ−1(1− γ)2(n+1)| ,

where C is a universal constant. To get an ε precision we need to choose γε = d−1/2ε/(2C)
and then nε = d(1/2) log(γε/4)/ log(1 − γε)e = d1/2 log(d)O(ε−1| log(ε)|). On the other
hand since L̃ = 0, based on the bound given by Theorem 14, a sufficient number of
iterations to get ‖δxRnε

γε −π‖TV ≤ ε is of order d1/2 log2(d)O(ε−1 log2(ε)). It follows that
our upper bound for the step size and the optimal number of iterations is again sharp
up to a logarithmic factor in the dimension and the precision. The discussions on the
bounds for constant sequences of step sizes are summarized in Table 4 and Table 5.

H1, H2 H1, H2 and H3

‖π − πγ‖TV d1/2O(γ1/2) dO(γ |log(γ)|)
Table 4. Order of the bound between π and πγ in total variation function of the step

size γ > 0 and the dimension d.
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High-dim. Bayesian inference via the ULA Algorithm 17

H1, H2 H1, H2 and H3

γε d−1O(ε2) d−1 log−1(d)O(ε
∣∣log−1(ε)

∣∣)
nε d log(d)O(ε−2 |log(ε)|) d log2(d)O(ε−1 log2(ε))

Table 5. Order of the step size γε > 0 and the number of iterations nε ∈ N∗ to get
‖δx?Rnε

γε − π‖TV ≤ ε for ε > 0.

4. Mean square error and concentration for bounded
measurable functions

Let (Xk)k≥0 be the Euler discretization of the Langevin diffusion (2) associated with the
sequence of non-increasing step sizes (γk)k≥1. The result of the previous section allows
us to study the approximation of π(f) by the weighted average estimator π̂Nn (f) defined,
for f : Rd → R, N,n ∈ N, n ≥ 1 by

π̂Nn (f) =

N+n∑
k=N+1

ωNk,nf(Xk) , ωNk,n = γk+1Γ−1
N+2,N+n+1 . (26)

In all this section, Px and Ex denote the probability and the expectation respectively,
induced on ((Rd)N,B(Rd)N) by the Markov chain (Xn)n≥0 started at x ∈ Rd. First we
derive a bound on the mean-square error, defined as

MSEN,nf = Ex
[∣∣π̂Nn (f)− π(f)

∣∣2] ,
for f : Rd → R, which is either Lipschitz or measurable and bounded. This quantity can
be decomposed as the sum of the squared bias and variance:

MSEN,nf =
{
Ex[π̂Nn (f)]− π(f)

}2
+ Varx

{
π̂Nn (f)

}
.

We first obtain a bound for the bias for f Lipschitz. For all k ∈ {N+1, . . . , N+n}, de-
note by ξk the optimal transference plan between δxQ

k
γ and π for W2, i.e. W 2

2 (δxQ
k
γ , π) =∫

Rd×Rd ‖x− y‖2 dξk(x, y). Then by the Jensen inequality and because f is Lipschitz, we
have:

{
Ex[π̂Nn (f)]− π(f)

}2
=

(
N+n∑
k=N+1

ωNk,n

∫
Rd×Rd

{f(z)− f(y)}ξk(dz,dy)

)2

≤ ‖f‖2Lip

N+n∑
k=N+1

ωNk,n

∫
Rd×Rd

‖z − y‖2 ξk(dz,dy)

≤ ‖f‖2Lip

N+n∑
k=N+1

ωNk,nW
2
2 (δxQ

k
γ , π) . (27)
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18 A. Durmus, É. Moulines

Similarly, if f is bounded,

(
Ex[π̂Nn (f)]− π(f)

)2 ≤ osc(f)2
N+n∑
k=N+1

ωNk,n‖δxQkγ − π‖2TV ;

Using the results of Sections 2 and 3, we can deduce different bounds for the bias,
depending on the assumptions on U and the sequence of step sizes (γk)k≥1. We now
derive a bound for the variance. We get then two different results depending on the class
to which the function f belongs. In the case of Lipschitz function, we adapt the proof of
[?, Theorem 2] for homogeneous Markov chain to our inhomogeneous setting.

Theorem 15. Assume H 1 and H 2. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 2/(m+ L) and f : Rd → R be a Lipschitz function. Then for all N ≥ 0 and n ≥ 1,

we get Varx{π̂Nn (f)} ≤ 8κ−2 ‖f‖2Lip Γ−1
N+2,N+n+1vN,n(γ), where

vN,n(γ) =
{

1 + Γ−1
N+2,N+n+1(κ−1 + 2/(m+ L))

}
. (28)

Proof. The proof is postponed to [?, ??].

It is noteworthy to observe that the bound for the variance does not depend on the
dimension. We may now discuss the bounds on the MSE (obtained by combining the
bounds for the squared bias (27) from Theorems 5 and 8, and the variance Theorem 15)
for step sizes given for k ≥ 1 by γk = γ1/k

α where α ∈ [0, 1] and γ1 < 1/(m + L).
Details of these calculations are postponed to [?, ????]. The order of the bounds (up
to numerical constants) of the MSE are summarized in Table 6 as a function of γ1, n
and N . Then, we can conclude that in the infinite horizon setting, it is optimal to take
α = 1/2 under H1 and H2, and α = 1/3 under H1, H2 and H3. Note that [?] shows
also that the optimal value for α is 1/3 by studying the asymptotic behaviour of π̂0

n(f)
as n→ +∞ for smooth functions f : Rd → R.

Bound for the MSE
α = 0 γ1 + (γ1n)−1 {1 + exp(−κγ1N/2)}

α ∈ (0, 1/2) γ1n
−α + (γ1n

1−α)−1
{

1 + exp(−κγ1N
1−α/(2(1− α)))

}
α = 1/2 γ1 log(n)n−1/2 + (γ1n

1/2)−1
{

1 + exp(−κγ1N
1/2/4)

}
α ∈ (1/2, 1) nα−1

[
γ1 + γ−1

1

{
1 + exp(−κγ1N

1−α/(2(1− α)))
}]

α = 1 O(log(n)−1) for γ1 > 2κ−1

Table 6. Bound for the MSE for γk = γ1k
−α for fixed γ1 and N under H1 and H2

In the case γk = γ for all k ∈ N∗ and the total number of iterations n+N is held fixed
(fixed horizon setting), we optimize the value of the step size γ but also of the burn-in
period N to get an upper bound of order n−1/2 under H1 and H2, and n−2/3 under H
1, H2 and H3.

In the case where f is measurable and bounded, we have the following result.
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Bound for the MSE
α = 0 γ2

1 + (γ1n)−1{1 + exp(−κγ1N/2)}
α ∈ (0, 1/3) γ2

1n
−2α + (γ1n

1−α)−1{1 + exp(−κγ1N
1−α/(2(1− α)))}

α = 1/3 γ2
1 log(n)n−2/3 + (γ1n

2/3)−1{1 + exp(−κγ1N
1/2/4)}

α ∈ (1/3, 1) nα−1
[
γ2

1 + γ−1
1 {1 + exp(−κγ1N

1−α/(2(1− α)))}
]

α = 1 O(log(n)−1) for γ1 > 4κ−1

Table 7. Bound for the MSE for γk = γ1k
−α for fixed γ1 and N under H1, H2 and H3

Theorem 16. Assume H 1 and H 2. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 2/(m + L) and f : Rd → R be a measurable and bounded function. Then for all
N ≥ 0, n ≥ 1, x ∈ Rd, we get

Varx{π̂Nn (f)} ≤ osc(f)2{2γ1Γ−1
N+2,N+n+1 + u

(4)
N,n(γ)}

u
(4)
N,n(γ) =

N+n−1∑
k=N

γk+1

{
N+n∑
i=k+2

ωNi,n
(πΛk+2,i(γ))1/2

}2

+ κ−1

{
N+n∑
i=N+1

ωNi,n
(4πΛN+1,i(γ))1/2

}2

, (29)

for n1, n2 ∈ N, Λn1,n2(γ) is given by (16).

Proof. The proof is postponed to ??.

To illustrate the result Theorem 16, we first illustrate numerically the behaviour

(u
(4)
N,n)n≥1 for κ = 1 N = 0, and four different non-increasing sequences of step sizes

(γk)k≥1, γk = (1 + k)−α for α = 1/4, 1/2, 3/4 and γk = 1/2 for k ≥ 1. These results are

gathered in Figure 1, where it can be observed that (Γnu
(4)
0,n(γ))n≥1 converges to a limit

as n → +∞. In [?, ??], we show that there exist C1, C2 > 0 independent of (γk)k≥1,

such that C1Γ−1
n ≤ u

(4)
0,n(γ) ≤ C2Γ−1

n , for non-increasing sequence (γk)k≥1 satisfying
limk→+∞ γk = 0 and limk→+∞ Γk = +∞. Therefore, the consequences of Theorem 16
are similar to those of Theorem 15 and are omitted.

We now establish an exponential deviation inequality for π̂Nn (f)−Ex[π̂Nn (f)] given by
(26) for a bounded measurable function f .

Theorem 17. Assume H 1 and H 2. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 2/(m+ L). Then for all N ≥ 0, n ≥ 1, r > 0 and Lipschitz functions f : Rd → R:

Px
[
π̂Nn (f) ≥ Ex[π̂Nn (f)] + r

]
≤ exp

(
−r

2κ2ΓN+2,N+n+1

16 ‖f‖2Lip vN,n(γ)

)
,
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Figure 1. Plots of (u
(4)
0,n)n≥1Γn for four sequences of step sizes (γk)k≥1, γk = (1 + k)−α for α =

0, 1/4, 1/2, 3/4

where vN,n(γ) is defined by (28).

Proof. The proof is postponed to [?, ??].

If we apply this result to the sequence (γk)k≥1 defined for all k ≥ 1 by γk = γ1k
−α,

for α ∈ [0, 1], we end up with a concentration of order exp(−Cr2γ1n
1−α) for α ∈ [0, 1),

for some constant C ≥ 0 independent of γ1 and n.

Theorem 18. Assume H 1 and H 2. Let (γk)k≥1 be a non-increasing sequence with
γ1 ≤ 2/(m+L). Let (Xn)n≥0 be given by (2) and started at x ∈ Rd. Then for all N ≥ 0,
n ≥ 1, r > 0, and functions f ∈ Fb(Rd):

Px
[
π̂Nn (f) ≥ Ex[π̂Nn (f)] + r

]
≤ e−{r−osc(f)(ΓN+2,N+n+1)−1}2/{2osc(f)2u

(5)
N,n(γ)} ,

where

u
(5)
N,n(γ) =

N+n−1∑
k=N

γk+1

{
N+n∑
i=k+2

ωNi,n
(πΛk+2,i)1/2

}2

+ κ−1

{
N+n∑
i=N+1

ωNi,n
(πΛN+1,i)1/2

}2

.

Proof. The proof is postponed to [?, ??].

Note that u
(5)
N,n(γ) is up to numerical constants similar to u

(4)
N,n(γ) given in (29).

Therefore, using the same calculations as in [?, ??], there exist C1, C2 > 0 such that
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C1Γ−1
n ≤ u

(5)
0,n(γ) ≤ C2Γ−1

n , for γk = γ1/k
−α, α ∈ [0, 1]. Then, if we apply Theorem 18

to the sequence (γk)k≥1 defined for all k ≥ 1 by γk = γ1k
−α, for α ∈ [0, 1], we end up

with a concentration of order exp(−Cr2γ1n
1−α) for α ∈ [0, 1), for some constant C ≥ 0

independent of γ1 and n.

5. Numerical experiments

Consider a binary regression set-up in which the binary observations (responses) {Yi}pi=1

are conditionally independent Bernoulli random variables with parameters {%(βββTXi)}pi=1,
where % is the logistic function defined for z ∈ R by %(z) = ez/(1 + ez) and {Xi}pi=1 and
βββ are d dimensional vectors of known covariates and unknown regression coefficients,
respectively. The prior distribution for the parameter βββ is a zero-mean Gaussian distri-
bution with covariance matrix Σβββ . The density of the posterior distribution of βββ is up to
a proportionality constant given by

πβββ(βββ|{(Xi, Yi)}pi=1) ∝ exp

(
p∑
i=1

{
Yiβββ

TXi − log(1 + eβββ
TXi)

}
− 2−1βββTΣ−1

βββ βββ

)
.

Bayesian inference for the logistic regression model has long been recognized as a numer-
ically involved problem. Several algorithms have been proposed, trying to mimick the
data-augmentation (DA) approach of [?] for probit regression; see [?], [?] and [?]. Re-
cently, a very promising DA algorithm has been proposed in [?], using the Polya-Gamma
distribution in the DA part. This algorithm has been shown to be uniformly ergodic for
the total variation by [?, Proposition 1], which provides an explicit expression for the er-
godicity constant. This constant is exponentially small in the dimension of the parameter
space and the number of samples. Moreover, the complexity of the augmentation step is
cubic in the dimension, which prevents from using this algorithm when the dimension of
the regressor is large.

We apply ULA to sample from the posterior distribution πβββ(·|{(Xi, Yi)}pi=1). The
gradient of its log-density may be expressed as

∇ log{πβββ(βββ|{Xi, Yi}pi=1)} =

p∑
i=1

{
YiXi −

Xi

1 + e−βββTXi

}
− Σ−1

βββ βββ ,

Therefore − log πβββ(·|{Xi, Yi}pi=1) is strongly convex H2 with m = λ−1
max(Σβββ) and satisfies

H1 with L = (1/4)
∑p
i=1X

T
i Xi + λ−1

min(Σβββ), where λmin(Σβββ) and λmax(Σβββ) denote the
minimal and maximal eigenvalues of Σβββ , respectively. We first compare the histograms
produced by ULA and the Pòlya-Gamma Gibbs sampling from [?]. For that purpose, we
take d = 5, p = 100, generate synthetic data (Yi)1≤i≤p and (Xi)1≤i≤p, and set Σ−1

βββ =

(dp)−1(
∑p
i=1X

T
i Xi) Id. We produce 108 samples from the Pólya-Gamma sampler using

the R package BayesLogit [?]. Next, we make 103 runs of the Euler approximation scheme
with n = 106 effective iterations, with a constant sequence (γk)k≥1, γk = 10(κn1/2)−1

for all k ≥ 0 and a burn-in period N = n1/2. The histogram of the Pólya-Gamma
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Gibbs sampler for first component, the corresponding mean of the obtained histograms
for ULA and the 0.95 quantiles are displayed in Figure 2. The same procedure is also
applied with the decreasing step size sequence (γk)k≥1 defined by γk = γ1k

−1/2, with
γ1 = 10(κ log(n)1/2)−1 and for the burn in period N = log(n), see also Figure 2. In
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Figure 2. Empirical distribution comparison between the Polya-Gamma Gibbs Sampler and ULA. Left
panel: constant step size γk = γ1 for all k ≥ 1; right panel: decreasing step size γk = γ1k−1/2 for all
k ≥ 1

addition, we also compare MALA and ULA on five real data sets, which are summarized
in Table 8. Note that for the Australian credit data set, the ordinal covariates have been
stratified by dummy variables. Furthermore, we normalized the data sets and consider
the Zellner prior setting Σ−1 = (π

2d/3)Σ−1
X where ΣX = p−1

∑p
i=1XiX

T
i ; see [?], [?]

and the references therein. Also, we apply a pre-conditioned version of MALA and ULA,

targeting the probability density π̃βββ(·) ∝ πβββ(Σ
1/2
X ·). Then, we obtain samples from πβββ

by post-multiplying the obtained draws by Σ
1/2
X . We compare MALA and ULA for each

data sets by estimating for each component i ∈ {1, . . . , d} the marginal accuracy between
their d marginal empirical distributions and the d marginal posterior distributions, where
the marginal accuracy between two probability measure µ, ν on (R,B(R)) is defined by

MA(µ, ν) = 1− (1/2)‖µ− ν‖TV .

This quantity has already been considered in [?] and [?] to compare approximate sam-
plers. To estimate the d marginal posterior distributions, we run 2 · 107 iterations of the
Polya-Gamma Gibbs sampler. Then 100 runs of MALA and ULA (106 iterations per
run) have been performed. For MALA, the step size is chosen so that the acceptance
probability at stationarity is approximately equal to 0.5 for all the data sets. For ULA,
we choose the same constant step size than MALA. We display the boxplots of the mean
of the estimated marginal accuracy across all the dimensions in Figure 3. These results all
imply that ULA is an alternative to the Polya-Gibbs sampler and the MALA algorithm.

1http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
2http://archive.ics.uci.edu/ml/datasets/Statlog+(Heart)
3http://archive.ics.uci.edu/ml/datasets/Statlog+(Australian+Credit+Approval)
4http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
5https://archive.ics.uci.edu/ml/datasets/Musk+(Version+1)
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hhhhhhhhhhhhData set
Dimensions

Observations p Covariates d

German credit 1 1000 25
Heart disease 2 270 14

Australian credit3 690 35
Pima indian diabetes4 768 9

Musk5 476 167
Table 8. Dimension of the data sets
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Figure 3. Marginal accuracy across all the dimensions.
Upper left: German credit data set. Upper right: Australian credit data set. Lower left: Heart disease
data set. Lower right: Pima Indian diabetes data set. At the bottom: Musk data set
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6. Contraction in total variation for functional
autoregressive models

In this section, we consider functional autoregressive models defined for k ≥ 0 by

Xk+1 = hk+1(Xk) + σk+1Zk+1 , (30)

where (Zk)k≥1 is a sequence of i.i.d. d dimensional standard Gaussian random variables,
(σk)k≥1 is a sequence of positive real numbers and (hk)k≥1 is a sequence of measurable
functions from Rd to Rd which satisfies the following assumption:

AR1. For all k ≥ 1, hk is $k-Lipschitz.

The sequence {Xk, k ∈ N} is an inhomogeneous Markov chain with Markov kernels
(Pk)k≥1 on (Rd,B(Rd)) given for all x ∈ Rd and A ∈ Rd by

Pk(x, A) =
1

(2πσ2
k)d/2

∫
A

exp
(
−‖y − hk(x)‖2 /(2σ2

k)
)

dy . (31)

We denote for all n ≥ 1 by Qn the marginal distribution of Xn given by

Qn = P1 · · ·Pn . (32)

In this section we compute an upper bound of ‖δxQn− δyQn‖TV which does not depend
on the dimension d. Define for x, y ∈ Rd

Ek(x, y) = hk(y)− hk(x) , ek(x, y) =

{
Ek(x, y)/ ‖Ek(x, y)‖ if Ek(x, y) 6= 0

0 otherwise ,
(33)

For all x, y, z ∈ Rd, x 6= y, define

Fk(x, y, z) = hk(y) + 0σk
(
Id−2ek(x, y)ek(x, y)T

)
z (34)

αk(x, y, z) =
ϕϕϕσ2

k
(‖Ek(x, y)‖ − 〈ek(x, y), z〉)
ϕϕϕσ2

k
(〈ek(x, y), z〉)

, (35)

where ϕϕϕσ2
k

is the probability density of a zero-mean gaussian variable with variance σ2
k.

Let Z1 be a standard d-dimensional Gaussian random variable. Set X1 = hk(x) + σkZ1

and

Y1 =

{
hk(y) + σkZ1 if Ek(x, y) = 0

B1 X1 + (1−B1) Fk(x, y,Z1) if Ek(x, y) 6= 0 ,

where 0B1 is given Z1, a Bernoulli random variable with success probability

pk(x, y,Z1) = 1 ∧ αk(x, y,Z1) .
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The construction above defines for all (x, y) ∈ Rd × Rd the Markov kernel Kk on (Rd ×
Rd,B(Rd)⊗ B(Rd)) given for all (x, y) ∈ Rd × Rd and A ∈ B(Rd)⊗ B(Rd) by

Kk((x, y), A) =
1D(hk(x), hk(y))

(2πσ2
k)d/2

∫
Rd

1A(x̃, x̃)e−‖τk(x̃,x)‖2/(2σ2
k)dx̃ (36)

+
1Dc(hk(x), hk(y))

(2πσ2
k)d/2

[∫
Rd

1A(x̃, x̃)pk(x, y, 0σ−1
k τk(x̃, x))e−‖τk(x̃,x)‖2/(2σ2

k)dx̃

+

∫
Rd

1A(x̃,Fk(x, y, 0σ−1
k τk(x̃, x)))

{
1− pk(x, y, 0σ−1

k τk(x̃, x))
}

e−‖τk(x̃,x)‖2/(2σ2
k)dx̃

]
,

where for all x̃ ∈ Rd, τk(x̃, x) = x̃ − hk(x) and D =
{

(x̃, ỹ) ∈ Rd × Rd
∣∣ x̃ = ỹ

}
. It is

shown in [?, Section 3.3] that for all x, y ∈ Rd and k ≥ 1, Kk((x, y), ·) is a transference
plan of Pk(x, ·) and Pk(y, ·). For completeness, the proof is given in [?, ??]. Furthermore,
we have for all x, y ∈ Rd and k ≥ 1

Kk((x, y),D) = 2Φ

(
−‖Ek(x, y)‖

2σk

)
. (37)

For all initial distribution µ0 on (Rd×Rd,B(Rd)⊗B(Rd)), P̃µ0
and Ẽµ0

denote the prob-
ability and the expectation respectively, associated with the sequence of Markov kernels
(Kk)k≥1 defined in (36) and µ0 on the canonical space ((Rd×Rd)N, (B(Rd)⊗B(Rd))⊗N),

{(Xi,Yi), i ∈ N} denotes the canonical process and {F̃i, i ∈ N} the corresponding fil-
tration. Then if (X0,Y0) = (x, y) ∈ Rd ×Rd, for all k ≥ 1 (Xk,Yk) is a coupling of δxQ

k

and δyQ
k. Using Lindvall’s inequality, bounding ‖δxQn − δyQn‖TV amounts to evaluate

P̃(x,y)(Xn 6= Yn).

Theorem 19. Assume AR1. Then for all x, y ∈ Rd and n ≥ 1,

‖δxQn − δyQn‖TV ≤ 1Dc((x, y))

{
1− 2Φ

(
−‖x− y‖

2Ξ
1/2
n

)}
,

where (Ξi)i≥1 is defined for all k ≥ 1 by Ξk =
∑k
i=1{σ2

i /
∏i
j=1$

2
j}.

We preface the proof by a technical Lemma.

Lemma 20. For all ς, a > 0 and t ∈ R+, the following identity holds∫
R
ϕϕϕς2(y)

{
1− 1 ∧ ϕ

ϕϕς2(t− y)

ϕϕϕς2(y)

}{
1− 2Φ

(
−|2y − t|

2a

)}
dy

= 1− 2Φ

(
− t

2(ς2 + a2)1/2

)
.
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Proof. Let ς, a > 0 and t ∈ R+. Let us denote by I the integral on the left hand side in
the expression above. Then,

I =

∫ t/2

−∞
{ϕϕϕς2(y)−ϕϕϕς2(t− y)}

{
1− 2Φ

(
2y − t

2a

)}
dy

=

∫ t/2

−∞
ϕϕϕς2(y)

{
1− 2Φ

(
2y − t

2a

)}
dy (38)

−
∫ −t/2
−∞

ϕϕϕς2(y)

{
1− 2Φ

(
t+ 2y

2a

)}
dy ,

Now to simplify the proof, we give a probabilistic interpretation of this two integrals. Let
X and Y be two real Gaussian random variables with zero mean and variance a2 and ς2

respectively. Since for all u ∈ R+, 1− 2Φ(−u/(2a)) = P[|X | ≤ u/2], we have by (38)

I = P (Y ≤ t/2,X + Y ≤ t/2,Y −X ≤ t/2)

− P (Y ≥ t/2,X + Y ≥ t/2,Y −X ≥ t/2) .

Using that Y and −Y have the same law in the second term, we get I = I1 + I2 where

I1 = P (Y ≤ t/2,X + Y ≤ t/2,Y −X ≤ t/2,X ≥ 0)

− P (Y ≤ −t/2,X −Y ≥ t/2,Y + X ≤ −t/2,X ≥ 0)

= P (|X + Y | ≤ t/2,X ≥ 0) , (39)

and

I2 = P (Y ≤ t/2,X + Y ≤ t/2,Y −X ≤ t/2,X ≤ 0)

− P (Y ≤ −t/2,X −Y ≥ t/2,Y + X ≤ −t/2,X ≤ 0) .

Using again that Y and −Y have the same law in the two terms we have

I2 = P (Y ≥ −t/2,X −Y ≤ t/2,Y + X ≥ −t/2,X ≤ 0)

− P (Y ≥ t/2,X + Y ≥ t/2,X −Y ≤ −t/2,X ≤ 0)

= P (|X + Y | ≤ t/2,X ≤ 0) . (40)

Combining (39), (40), we get I = P(|X + Y | ≤ t/2). The proof follows from the fact that
X + Y is a real Gaussian random variable with mean zero and variance a2 + ς2, since X
and Y are independent.

Proof of Theorem 19. Since for all k ≥ 1, (Xk,Yk) is a coupling of δxQ
k and δyQ

k,

‖δxQk − δyQk‖TV ≤ P̃(x,y)(Xk 6= Yk).
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Define for all k1, k2 ∈ N∗, k1 ≤ k2, Ξk1,k2 =
∑k2
i=k1
{σ2

i /
∏i
j=k1

$2
j}. Let n ≥ 1. We

show by backward induction that for all k ∈ {0, · · · , n− 1},

P̃(x,y)(Xn 6= Yn) ≤ Ẽ(x,y)

[
1Dc(Xk,Yk)

[
1− 2Φ

{
− ‖Xk −Yk‖

2 (Ξk+1,n)
1/2

}]]
, (41)

Note that the inequality for k = 0 will conclude the proof.
Since Xn 6= Yn implies that Xn−1 6= Yn−1, the Markov property and (37) imply

P̃(x,y)(Xn 6= Yn) = Ẽ(x,y)

[
1Dc(Xn−1,Yn−1)Ẽ(Xn−1,Yn−1) [1Dc(X1,Y1)]

]
≤ Ẽ(x,y)

[
1Dc(Xn−1,Yn−1)

[
1− 2Φ

{
−‖En−1(Xn−1,Yn−1)‖

2σn

}]]
Using AR1 and (33), ‖En(Xn−1,Yn−1)‖ ≤ $n ‖Xn−1 −Yn−1‖, showing (41) holds for
k = n− 1.

Assume that (41) holds for k ∈ {1, . . . , n− 1}. On {Xk 6= Yk}, we have

‖Xk −Yk‖ =
∣∣−‖Ek(Xk−1,Yk−1)‖+ 2σkek(Xk−1,Yk−1)TZk

∣∣ ,
which implies

1Dc(Xk,Yk)

[
1− 2Φ

{
−‖Xk −Yk‖

2Ξ
1/2
k+1,n

}]

= 1Dc(Xk,Yk)

[
1− 2Φ

{
−
∣∣2σkek(Xk−1,Yk−1)TZk − ‖Ek(Xk−1,Yk−1)‖

∣∣
2Ξ

1/2
k+1,n

}]
.

Since Zk is independent of F̃k−1, σkek(Xk−1,Yk−1)TZk is a real Gaussian random variable
with zero mean and variance σ2

k, therefore by Lemma 20, we get

ẼF̃k−1

(x,y)

[
1Dc(Xk,Yk)

[
1− 2Φ

{
−‖Xk −Yk‖

2Ξ
1/2
k+1,n

}]]

≤ 1Dc(Xk−1,Yk−1)

[
1− 2Φ

{
−‖Ek(Xk−1,Yk−1)‖

2 (σ2
k + Ξk+1,n)

1/2

}]
.

Using by AR1 that ‖Ek(Xk−1,Yk−1)‖ ≤ $k ‖Xk−1 −Yk−1‖ concludes the induction.
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Supplementary Material

Most proofs and derivations are postponed and carried out in a supplementary paper.
(doi: COMPLETED BY THE TYPESETTER; .pdf).
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