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Abstract: Hamiltonian Monte Carlo (HMC) is currently one of
the most popular Markov Chain Monte Carlo algorithms to sample
smooth distributions over continuous state space. This paper dis-
cusses the irreducibility and geometric ergodicity of the HMC algo-
rithm. We consider cases where the number of steps of the Störmer-
Verlet integrator is either fixed or random. Under mild conditions on
the potential U associated with target distribution π, we first show
that the Markov kernel associated to the HMC algorithm is irre-
ducible and positive recurrent. Under more stringent conditions, we
then establish that the Markov kernel is Harris recurrent. We provide
verifiable conditions on U under which the HMC sampler is geomet-
rically ergodic. Finally, we illustrate our results on several examples.

1. Introduction . We consider the Hamiltonian Monte Carlo (HMC),
a Metropolis-Hastings algorithm to sample from a target probability density
π on Rd. This method was first proposed by [8] in computational physics. It
was later introduced to the statistics community in [22] and quickly gained
popularity; see for example [14, chapter 9], [23, 13].

Consider a target probability density π on Rd with respect to the Lebesgue
measure, defined for all q ∈ Rd by

π(q) = e−U(q)

/∫
Rd

e−U(q̃)dq̃ ,

where U : Rd → R is a continuously differentiable function. Hamiltonian
dynamics describes the evolution of a physical system which consists in the
position q ∈ Rd and the momentum p ∈ Rd. The total energy of the system
is given by the Hamiltonian function H defined for (q, p) ∈ Rd × Rd by

H(q, p) = U(q) + ‖p‖2 /2 .
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2 A. DURMUS, É. MOULINES, E. SAKSMAN

Note that other choices of kinetic energy have been proposed recently, see
e.g. [16] and [17]. The system (q(t), p(t))t≥0 then evolves according to Hamil-
ton’s equations on Rd × Rd,

(1)
d

dt

[
q(t)
p(t)

]
=

[
p(t)

−∇U(q(t))

]
.

The Hamiltonian flow associated with (1) preserves the extended target
distribution (see [23] and [3]) with density π̃ given for any (q, p) ∈ R2d by

(2) π̃(q, p) = Z−1 exp(−H(q, p)) , Z =

∫
R2d

exp(−H(q, p))dqdp ,

The distribution π̃ is the independent product of π and the d-dimensional
Gaussian distribution with zero mean and identity covariance matrix. There-
fore, sampling from π̃ allows to get samples from π by marginalization. Since
the Hamiltonian flow leaves π̃ invariant, it has been suggested to sample π̃
by sampling independently the momentum variable from a standard Gaus-
sian distribution and then integrating the Hamiltonian flow during either
a fixed or a random duration leading to an idealized version of HMC. The
irreducibility and geometric ergodicity of this algorithm has been studied in
[4]; see Section 3.2 for a discussion.

In most cases, it is not possible to compute explicitly the solutions of (1);
discretization must be used instead. In this paper, we consider the Störmer-
Verlet integrator which proceeds as follows. Let h ∈ R∗+ be a time step and
T ∈ N∗ be a number of iterations. The sequence (q`, p`)`∈{0,...,T} , starting

from (q0, p0) ∈ Rd × Rd is defined by the recursion
p`+1/2 = p` − (h/2)∇U(q`)

q`+1 = q` + hp`+1/2

p`+1 = p`+1/2 − (h/2)∇U(q`+1) .

This sequence defines a discrete dynamical system given for ` ∈ {0, . . . , T−1}
by

(q`+1, p`+1) = Ψ
(1)
h/2 ◦Ψ

(2)
h ◦Ψ

(1)
h/2(q`, p`) = Φ

(1)
h (q`, p`) ,

where for each t ∈ R+, Ψ
(1)
t ,Ψ

(2)
t : R2d → R2d are given for all (q, p) ∈ R2d by

Ψ
(1)
t (q, p) = (q, p− t∇U(q)) and Ψ

(2)
t (q, p) = (q+ tp, p). Define the sequence

of iterates {Φ◦(`)h : Rd × Rd → Rd × Rd : ` ∈ N∗} for ` ≥ 1 by induction

(3) Φ
◦(`+1)
h = Φ

◦(`)
h ◦ Φ

◦(1)
h ,
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Set for all ` ≥ 1,

(4) Φ̃
◦(`)
h = proj ◦ Φ

◦(`)
h ,

where proj : Rd×Rd → Rd is the projection on the first d coordinates, for all
(q, p) ∈ Rd×Rd, proj(q, p) = q. Thus, with our notation for all ` ∈ {1, . . . , T},
(q`, p`) = Φ

◦(`)
h (q0, p0) and q` = Φ̃

◦(`)
h (q0, p0). We now have all the back-

ground required to describe the HMC algorithm. Denote by (Qk, Pk) the
value of the position and momentum at the k-th iteration of the algorithm.
Each iteration of the algorithm may be decomposed into two steps, which are
constructed to leave the extended distribution π̃ invariant; see [23], [12] and
[3, Theorem 5.7]. In the first step, we draw Gk+1 from the d-dimensional nor-
mal distribution with zero mean and identity covariance matrix, independent
of {(Qj , Pj)}kj=0. In the second step, we set the initial conditions (Qk, Gk+1)
and compute the position and the momentum after T leapfrog steps. This

move is accepted with probability αH{(Qk, Gk+1),Φ
◦(T )
h (Qk, Gk+1)} where

for all (q, p) ∈ Rd × Rd, (q̃, p̃) ∈ Rd × Rd

(5) αH {(q, p), (q̃, p̃)} = min [1, exp (H(q, p)−H(q̃, p̃))] .

It may be shown that π̃ is invariant (see (2)) with respect to the Markov
kernel defined by the HMC algorithm on the extended state space Rd ×Rd;
see [12]. Hence, π is a stationary distribution for the Markov chain (Qk)k≥0,
which is the process which we are interested in. The number of steps T
is either a deterministic quantity or a random variable independent of the
current state. If the number of steps T = 1, then the algorithm reduces to
the Metropolis Adjusted Langevin Algorithm (MALA) [25].

Recently, the theory on HMC have been addressed by many authors; see
[5, 29, 28, 1, 15] and in depth discussions of the HMC methodology can be
found in [23, 1, 3]. This paper addresses two important issues in the analysis
of HMC algorithm: irreducibility and geometric ergodicity.

Irreducibility plays an essential role in the theory of Markov chains. In
particular, it implies that the invariant distribution, when it exists, is unique.
The classical approach to derive irreducibility of Hastings-Metropolis algo-
rithms on Rd, outlined for example in [20] [26], is to use that the proposal
distribution admits a (sufficiently regular) transition density with respect to
the Lebesgue measure. For HMC, this condition does not necessarily hold.
HMC has been shown to be irreducible in [6] in the case where the state
space is compact and the potential is twice continuously differentiable. In
[15], under appropriate conditions, irreducibility is shown for a version of
HMC where the number of leap-frog steps T is random, independent of the
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proposal, and such that T = 1 with positive probability. Under such assump-
tion, irreducibility of HMC boils down to irreducibility of MALA which has
been established in [25]. In this paper, we establish the irreducibility of the
HMC algorithm under a general tail condition of the target density which
significantly relaxes the assumptions of [6] and [15]. This result follows from
a general irreducibility result for iterative Markov models which we believe
to be of independent interest; see Appendix A. Our main tool to establish
irreducibility is the degree theory for continuous maps [24].

In a second part, we establish the geometric ergodicity of the HMC sam-
pler under the assumptions that the potential U is homogeneous outside a
ball or is a perturbation of a homogeneous potential. Our assumptions imply
that the proposal kernel of HMC satisfies an ‘inwards acceptance’ property
[25]. Our results complement the recent paper [15] which provides a variety
of conditions under which the HMC algorithm is not geometrically ergodic.

In [4], a variant of HMC, referred to as the Randomized Hamiltonian
Monte Carlo (RHMC), is analyzed. This method is associated with a conti-
nuous-time Markov process for which π̃ given by (2) is invariant [4, Proposi-
tion 3.1]. However, sampling such a process requires the exact Hamiltonian
flow which allows to by-pass the acceptance-rejection step and makes the
analysis easier. By-passing the discretization step nevertheless reduces the
applicability of the results, since direct integration of the Hamiltonian flow
is most of the time not an option. We discuss a simple example showing
that the conditions in [4] upon which RHMC is geometrically ergodic are
not sufficient in the case of HMC.

The paper is organized as follows. In Section 2, conditions upon which the
HMC kernel, associated with (Qk)k∈N, is irreducible, recurrent and Harris-
recurrent are given. In Section 3, conditions under which the HMC kernel is
V -uniformly geometrically ergodic are developed and discussed. The proofs
of the main results of Section 2 are gathered in Section 4. Note that these
proofs rely on technical results established in the supplementary document
[10, Section S1]. Some general irreducibility results which are of independent
interest, are stated in Appendix A. Section S2 of the supplementary docu-
ment contains the proof for the statements of Section 3. Finally, our results
are illustrated through several examples in [10, Section S4].

Notations. Denote by R+ and R∗+, the set of non-negative and posi-
tive real numbers respectively. Denote by In the identity matrix. Denote by
‖·‖ the Euclidean norm on Rd. Denote by B(Rd) the Borel σ-field of Rd,
F(Rd) the set of all Borel measurable functions on Rd and for f ∈ F(Rd),
‖f‖∞ = supx∈Rd |f(x)|. Denote by Leb the Lebesgue-measure on Rd. For
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µ a probability measure on (Rd,B(Rd)) and f ∈ F(Rd) a µ-integrable
function, denote by µ(f) the integral of f w.r.t. µ. For f ∈ F(Rd), set
‖f‖∞ = supx∈Rd |f(x)|. Let V : Rd → [1,∞) be a measurable function. For
f ∈ F(Rd), the V -norm of f is given by ‖f‖V = ‖f/V ‖∞. For two proba-
bility measures µ and ν on (Rd,B(Rd)), the V -total variation distance of µ
and ν is defined as

‖µ− ν‖V = sup
f∈F(Rd),‖f‖V ≤1

∣∣∣∣∫
Rd
f(x)dµ(x)−

∫
Rd
f(x)dν(x)

∣∣∣∣
If V ≡ 1, then ‖µ−ν‖V is the total variation distance denoted by ‖µ−ν‖TV.
For all x ∈ Rd and M > 0, we denote by B(x,M), the ball centered at x of
radius M . Let M be a d×m-matrix, then denote by MT and det(M) (in the
case m = d) the transpose and the determinant of M respectively. Let k ≥ 1.
Denote by (Rd)⊗k the kth tensor power of Rd, for all x ∈ Rd, y ∈ R`, x⊗ y ∈
(Rd)⊗2 the tensor product of x and y, and x⊗k ∈ (Rd)⊗k the kth tensor
power of x. For all x1, . . . , xk ∈ Rd, set ‖x1 ⊗ · · · ⊗ xk‖ = supi∈{1,...,k} ‖xi‖.
We let L((Rd)⊗k,R`) stand for the set of linear maps from (Rn)⊗k to R`
and for L ∈ L((Rd)⊗k,R`), we denote by ‖L‖ the operator norm of L. Let
f : Rd → R` be a Lipschitz function, namely there exists C ≥ 0 such that
for all x, y ∈ Rd, ‖f(x)− f(y)‖ ≤ C ‖x− y‖. Then we denote ‖f‖Lip =

inf{‖f(x)− f(y)‖ / ‖x− y‖ | x, y ∈ Rd, x 6= y}. Let k ≥ 0 and U be an
open subset of Rd. Denote by Ck(U,R`) the set of all k times continuously
differentiable funtions from U to R`. Let Φ ∈ Ck(U,R`). Write JΦ for the
Jacobian matrix of Φ ∈ C1(Rd,R`), and DkΦ : U → L((Rd)⊗k,R`) for the
kth differential of Φ ∈ Ck(Rd,R`). For smooth enough functions f : Rd → R,
denote by ∇f and ∇2f the gradient and the Hessian of f respectively. Let
A ⊂ Rd. We write A,A◦ and ∂A for the closure, the interior and the boundary
of A, respectively. For any n1, n2 ∈ N, n1 > n2, we take the convention that∑n1

k=n2
= 0.

2. Ergodicity of the HMC algorithm. For h > 0 and T ∈ N∗,
consider the Markov kernel Ph,T associated with the Markov chain of the
HMC algorithm (Qk)k∈N, given for all q ∈ Rd and A ∈ B(Rd) by

Ph,T (q,A) =

∫
Rd
1A

(
Φ̃
◦(T )
h (q, p̃)

)
αH

{
(q, p̃),Φ

◦(T )
h (q, p̃)

} e−‖p̃‖
2/2

(2π)d/2
dp̃

+ δq(A)

∫
Rd

[
1− αH

{
(q, p̃),Φ

◦(T )
h (q, p̃)

}] e−‖p̃‖
2/2

(2π)d/2
dp̃ ,(6)

where Φ̃
◦(T )
h , Φ

◦(T )
h and αH are defined by (3)-(4) and (5) respectively. In

this Section, we establish conditions upon which the Markov kernel Ph,T is
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6 A. DURMUS, É. MOULINES, E. SAKSMAN

irreducible or (Harris) recurrent. For β ∈ [0, 1], we consider the following
assumption on the potential U .

H1 (β). U is continuously differentiable and

(i) there exists L1 > 0 such that for all q, x ∈ Rd,

‖∇U(q)−∇U(x)‖ ≤ L1 ‖q − x‖ .

(ii) there exists M1 ≥ 0 such that for all q ∈ Rd, ‖∇U(q)‖ ≤ M1{1+‖q‖β}

Before going further, we need to briefly recall some definitions pertaining
to Markov chains. Let P be a Markov kernel on (Rd,B(Rd)). Let n be an
integer and µ be a nontrivial measure on B(Rd). A set C ∈ B(Rd) is called a
(n, µ)-small set for P if for all x ∈ C and A ∈ B(Rd), Pn(x,A) ≥ µ(A). A set
A ∈ B(Rd) is said to be accessible for P if for all x ∈ Rd,

∑∞
i=1 Pi(x,A) > 0.

A non-trivial σ-finite measure µ is an irreducibility measure of P if and only
if any set A ∈ B(Rd) satisfying µ(A) > 0 is accessible. The Markov kernel P
is said to be irreducible if it admits an accessible small set or equivalently
an irreducibility measure (in [21], our notion of irreducibility is referred to
as φ-irreducibility, where φ is an irreducibility measure; here irreducibility
therefore means φ-irreducibility). P is said to be a T-kernel is there exists
a kernel T on Rd ×B(Rd) and a sequence of non-negative numbers (ai)i∈N∗

satisfying
∑+∞

i=1 ai = 1, such that (i) for any x ∈ Rd, T(x,Rd) > 0; (ii) for
any A ∈ B(Rd), x 7→ T(x,A) is lower semi-continuous; (iii) for any x ∈ Rd,
A ∈ B(Rd),

∑+∞
i=1 aiP

i(x,A) ≥ T(x,A). T is referred to as a continuous
component of P.

Let (Xn)n≥0 be the canonical chain associated with P defined on the
canonical space (Ω,F , (Px, x ∈ Rd)). A set A ∈ B(Rd) is said to be recurrent
if for all x ∈ A, Ex[NA] = +∞ where NA =

∑+∞
i=0 1A(Xi) is the number of

visits to A. The set A is Harris recurrent if for any x ∈ A, Px(NA = +∞) = 1.
The Markov kernel P is said to be Harris recurrent if all accessible sets are
Harris recurrent. In this case, for all x ∈ Rd, and all accessible sets A,
Px(NA = +∞) = 1.

Define ϑ1 : R+ → R+, for any s ∈ R+ by

(7) ϑ1(s) = 1 + s/2 + s2/4 .

We consider below values of the stepsize h and the number of iterations
satisfying

(8)
[
{1 + hL

1/2
1 ϑ1(hL

1/2
1 )}T − 1

]
< 1 ,
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For all h > 0 and T ∈ N∗, we have

{1 + hL
1/2
1 ϑ1(hL

1/2
1 )}T − 1 ≤ ehL

1/2
1 Tϑ1(hL

1/2
1 T ) − 1

using that ϑ1 is nondecreasing. Then, setting S̄ = cL
−1/2
1 where c = 0.521

is the unique positive root of the equation cϑ1(c) = log(2), all T ∈ N∗ and
h ∈

(
0, S̄/T

)
satisfy (8). Note that conversely, if h > 0 and T ∈ N∗ satisfies

(8), necessarily h ∈ (0,L
−1/2
1 ) because for any s > 0, ϑ1(s) ≥ 1. In addition,

since elog(2)s ≤ (1 + s) for all s ∈ (0, 1), T and h satisfy hT ≤ S̃ = L
−1/2
1 .

Theorem 1. Assume H 1(β) for some β ∈ [0, 1] and that U is twice
continuously differentiable. Then, for all T ∈ N∗, and h > 0 satisfying (8)

and q ∈ Rd, there exists a C1(Rd,Rd)-diffeomorphism q̃ 7→ Ψ̄
(T )
h (q, q̃) such

that for any p ∈ Rd,

(9) if qT = Φ̃
◦(T )
h (q, p) then p = Ψ̄

(T )
h (q, qT ) .

Moreover,

(i) The Markov kernel Ph,T , is a T-kernel; more precisely, for any B ∈
B(Rd),

Ph,T (q,B) = Th,T (q,B)(10)

+ δq(B)(2π)−d/2
∫
Rd

[
1− αH

{
(q, p̃),Φ

◦(T )
h (q, p̃)

}]
e−‖p̃‖

2/2dp̃ ,

where the kernel Th,T is a continuous component of Ph,T and is given by

(11) Th,T (q,B) = (2π)−d/2
∫
B
ᾱH(q, q̄)e

−
∥∥∥Ψ̄

(T )
h (q,q̄)

∥∥∥2/2
D

Ψ̄
(T )
h (q,·)(q̄)dq̄ ,

setting for q, q̃ ∈ Rd, ᾱH(q, q̄) = αH

{
(q, Ψ̄

(T )
h (q, q̄)),Φ

◦(T )
h (q, Ψ̄

(T )
h (q, q̄))

}
and D

Ψ̄
(T )
h (q,·)(q̃) = | det(J

Ψ̄
(T )
h (q,·)(q̃))|.

(ii) The Markov kernel Ph,T is irreducible and the Lebesgue measure is an
irreducibility measure. Moreover, Ph,T is aperiodic, Harris recurrent and all
the compact sets are 1-small. Therefore, for all q ∈ Rd,

(12) lim
n→+∞

‖δqPnh,T − π‖TV = 0 .

Proof. The proof is postponed to Section 4.1.
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8 A. DURMUS, É. MOULINES, E. SAKSMAN

In our next result, we relax the second order differentiability condition on
U , and in the case β < 1 we even allow for arbitrary large values of the step
size h and the number of iterations T . The result is less quantitative and the
proof is more involved: we use degree theory for continuous mapping (the
main notions required in the proof are recalled in Appendix A).

Theorem 2. Let h > 0 and T ∈ N∗ and assume either

(a) H1 (β) for some β ∈ [0, 1),
(b) H1 (1) and that T ∈ N∗ and h > 0 satisfy (8).

Then,

(i) the HMC kernel Ph,T defined by (6) is irreducible, aperiodic, the Lebesgue
measure is an irreducibility measure and any compact set of Rd is
small.

(ii) Ph,T is recurrent and for π-almost every q ∈ Rd, limn→+∞ ‖δqPnh,T −
π‖TV = 0.

Proof. The proof is postponed to Section 4.2.

To the best of the author’s knowledge, the first results regarding the
irreducibility of the HMC algorithm are established in [6] under the as-
sumption that U and ‖∇U‖ are bounded above (in [6] the state space of is
a d-dimensional torus). Irreducibility has also been tackled in [15]: in this
work however, the number of leapfrog steps T is assumed to be random and
independent of the current position and momentum. Under this setting and
additional conditions which in particular imply that the number of leapfrog
steps T is equal to 1 with positive probability, [15] shows that the kernel
associated with the HMC algorithm is irreducible. Under this condition, the
proof is a direct consequence of the irreducibility of the MALA algorithm -
a mixture of Markov kernels is irreducible as soon as one component of the
mixture is irreducible; the irreducibility of MALA kernel has been estab-
lished in [25]. Finally, [4, Proposition 3.7] shows that RHMC is irreducible
under the condition that U is at least quadratic. Note that Theorem 2 estab-
lishes irreducibility of HMC of sub-quadratic potential. However, leap-frog
integrator is not numerically stable for lighter than Gaussian target den-
sity, therefore other kind of integrators should be used instead, see e.g. [11,
Chapter VI].

Finally, note that our results can be easily extended to the case where the
number of steps is random. We briefly describe the main arguments to obtain
such extension. Let ($i)i∈N∗ be a probability distribution on N∗ and (hi)i∈N∗

imsart-aos ver. 2014/10/16 file: main.tex date: October 20, 2021



IRREDUCIBILITY AND GEOMETRIC ERGODICITY OF HMC 9

be a sequence of positive real numbers. Define the randomized Hamiltonian
kernel Ph,$$$ on (Rd,B(Rd)) associated with ($i)i∈N∗ and (hi)i∈N∗ by

(13) Ph,$$$ =
∑
i∈N∗

$iPhi,i .

We denote by supp($$$) = {i ∈ N∗ : ωi 6= 0} the support of the distribution
$$$.

Corollary 3. Let β ∈ [0, 1] and assume H 1(β). Let ($i)i∈N∗ be a
probability distribution on N∗, (hi)i∈N∗ be a sequence of positive real numbers,
and Ph,$$$ be the randomized Hamiltonian kernel associated with ($i)i∈N∗ and
(hi)i∈N∗.

(a) Assume that U is twice continuously and there exists i ∈ N∗ such that

[{1 +hiL
1/2
1 ϑ1(hiL

1/2
1 )}i− 1] < 1 and $i > 0 where ϑ1 is given by (7).

Then the conclusions of Theorem 1-(ii) hold for Ph,$$$.
(b) If β ∈ [0, 1), then the conclusions of Theorem 2-(a) hold for Ph,$$$.

(c) If β = 1 and there exists i ∈ supp($$$) such that [{1+hiL
1/2
1 ϑ1(hiL

1/2
1 )}i−

1] < 1, then the conclusions of Theorem 2-(b) hold for Ph,$$$.

Proof. (a) follows from Theorem 1 and Proposition S11. (b) and (c) are
straightforward applications of Theorem 2.

3. Geometric ergodicity of HMC.

3.1. Main results. In this section, we give conditions on the potential
U which imply that the HMC kernel (4) converges geometrically fast to its
invariant distribution. Let V : Rd → [1,+∞) be a measurable function and
P be a Markov kernel on (Rd,B(Rd)). The Markov kernel P is said to be
V -uniformly geometrically ergodic if P admits an invariant probability π
and there exists ρ ∈ [0, 1) and ς ≥ 0 such that for all q ∈ Rd and k ∈ N∗,

‖Pk(q, ·)− π‖V ≤ ςρkV (q) .

By [21, Theorem 16.0.1], if P is aperiodic, irreducible and satisfies a Foster-
Lyapunov drift condition, i.e. there exists a small set C for P, λ ∈ [0, 1) and
b < +∞ such that for all q ∈ Rd,

(14) PV ≤ λV + b1C ,

then P is V -uniformly geometrically ergodic. If a function V : Rd → [1,∞)
satisfies (14), then V is said to be a Foster-Lyapunov function for P. We first
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10 A. DURMUS, É. MOULINES, E. SAKSMAN

give an elementary condition to establish the V -uniform geometric ergodicity
for a class of generalized Metropolis-Hastings kernels which includes HMC
kernels as a particular example.

Let K be a proposal kernel on (Rd,B(R2d)) and α : R3d → [0, 1] be
an acceptance probability, assumed to be Borel measurable. Consider the
Markov kernel P on (Rd,B(Rd)) defined for all q ∈ Rd and A ∈ B(Rd) by
(15)

P(q,A) =

∫
R2d

1A(proj(z))α(q, z)K(q,dz)+δq(A)

∫
R2d

{1− α(q, z)}K(q,dz) ,

where proj : Rd × Rd → Rd is the canonical projection onto the first d
components. For h ∈ R∗+ and T ∈ N∗, Ph,T corresponds to P with K and α
given for all q, p, x ∈ Rd and B ∈ B(R2d) respectively by

Kh,T (q,B) = (2π)−d/2
∫
Rd
1B

(
Φ̃
◦(T )
h (q, p̃), p̃

)
e−‖p̃‖

2/2dp̃ ,(16)

α̃H(q, (q̃, p̃)) =

{
αH

{
(q, p̃),Φ

◦(T )
h (q, p̃)

}
, if q̃ = Φ̃

◦(T )
h (q, p̃) ,

0 otherwise ,
(17)

where Φ
◦(T )
h , Φ̃

◦(T )
h and αH are defined in (3), (4) and (5), respectively.

Let V : Rd → [1,+∞) be a norm-like function, i.e. a measurable function
such that for all M ∈ R+, the level sets

{
q ∈ Rd : V (q) ≤M

}
are compact.

Note that if V is norm-like, for any M ∈ R+,
{
q ∈ Rd : V (q) ≤M

}c
is non-

empty. The function V naturally extends on R2d by setting for all (q, p) ∈
R2d, V (q, p) = V (q). For all q ∈ Rd, define:
(18)

R(q) =
{
z ∈ R2d , α(q, z) < 1

}
, B(q) =

{
z ∈ R2d , V (proj(z)) ≤ V (q)

}
.

The set R(q) is the potential rejection region. Our next result gives a condi-
tion on K and α which implies that if V is a Foster-Lyapunov function for K
then P satisfies a Foster-Lyapunov drift condition as well. This result is in-
spired by [25, Theorem 4.1], which is used to show the V -uniform geometric
ergodicity of the MALA algorithm.

Proposition 4. Let V : Rd → [1,+∞) be a norm-like function. Assume
moreover that there exist λ ∈ [0, 1) and b ∈ R+ such that

(19) KV ≤ λV + b .

and

(20) lim
M→+∞

sup
{q∈Rd : V (q)≥M}

K(q,R(q) ∩B(q)) = 0 .
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IRREDUCIBILITY AND GEOMETRIC ERGODICITY OF HMC 11

Then there exist λ̃ ∈ [0, 1) and b̃ ∈ R+ such that PV ≤ λ̃V + b̃ where P is
given by (15).

Proof. The proof is postponed to Section S2.1.

We show below that under appropriate conditions, the proposal kernel
Kh,T and the acceptance probability α̃H given by (16) and (17) satisfy the
conditions of Proposition 4 which imply that the HMC kernel Ph,T is V -
uniformly geometrically ergodic. For m ∈ (1, 2], consider the following as-
sumption:

H2 (m). There exist A1 ∈ R∗+ and A2 ∈ R such that for all q ∈ Rd,

〈∇U(q), q〉 ≥ A1 ‖q‖m −A2 .

For all a ∈ R∗+ and q ∈ Rd, define

(21) Va(q) = exp(a ‖q‖) .

For h ≥ 0, define

(22) ϑ2(h) = M1/L
1/2
1 + M1h/2 + L

1/2
1 M1h

2/4 .

Proposition 5. (a) Assume H1(m − 1) and H2(m) for some m ∈
(1, 2). Then, for all T ∈ N∗, h ∈ R∗+, and a ∈ R∗+, there exist λ ∈ [0, 1)
and b ∈ R+ such that

(23) Kh,TVa ≤ λVa + b .

(b) Assume H1(1) and H2(2). Let S̃ > 0 be such that Θ(S̃) = A1 where
the function Θ is given by

Θ(s) = 2L
1/2
1 ϑ2(s){eL

1/2
1 sϑ1(L

1/2
1 s) − 1}(24)

+ 6s2
(

M2
1 + L1ϑ

2
2(s){eL

1/2
1 sϑ1(L

1/2
1 s) − 1}2

)
,

with ϑ1 and ϑ2 defined by (7) and (22) respectively. Let S̄ ∈ (0, S̃).
Then, for all a ∈ R∗+, T ∈ N∗ and h ∈

(
0, S̄/T

]
, there exist λ ∈ [0, 1)

and b ∈ R+ which satisfy (23).

Proof. The proof is postponed to Section S2.2

We now derive sufficient conditions under which the condition (20) of
Proposition 4 is satisfied.
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12 A. DURMUS, É. MOULINES, E. SAKSMAN

H3 (m). There exist F,G : Rd → R such that U = F +G and satisfying

(i) F ∈ C3(Rd) and there exists A3 ∈ R∗+ such that for all q ∈ Rd and
k = 2, 3,

∥∥DkF (q)
∥∥ ≤ A3{1 + ‖q‖}m−k.

(ii) There exist A4 ∈ R∗+ and RU ∈ R+ such that for all q ∈ Rd, ‖q‖ ≥ RU,

D2F (q) {∇F (q)⊗∇F (q)} ≥ A4 ‖q‖3m−4 .

(iii) G ∈ C1(Rd) and there exist A5 ∈ R∗+ and % ∈ [1, 2(m− 1)) such that
for any q, x ∈ Rd,

|G(q)| ≤ A5(1 + ‖q‖)% , ‖∇G(q)‖ ≤ A5(1 + ‖q‖)%−1 ,

‖∇G(q)−∇G(x)‖ ≤ A5 ‖q − x‖ .

It is easily checked that under H3, the results of Section 2 can be applied,
i.e. ∇U satisfies H1(m− 1); see Lemma S5.

Condition H2(m) and H3(m) are satisfied by power functions q 7→ c ‖q‖m.
More generally, they are satisfied by m-homogeneously quasiconvex func-
tions with convex level sets outside a ball and by perturbations of such
functions.

We say that a function F1 : Rd → R is m-homogeneous quasi-convex
outside a ball of radius R1 if the following conditions are satisfied:

(QC-1) for all t ≥ 1 and q ∈ Rd, ‖q‖ ≥ R1, F1(tq) = tmF1(q).
(QC-2) for all q ∈ Rd, ‖q‖ ≥ R1, the level sets {x : F1(x) ≤ F1(q)} are convex.

Proposition 6. Let m ∈ [1, 2] and R1 ∈ R+. Assume that the potential
U may be decomposed as U(q) = F1(q) + F2(q) + G(q), for any q ∈ Rd,
‖q‖ ≥ R1, where the functions F1, F2, G ∈ C3(Rd) satisfy the following two
conditions:

(A) F1 is m-homogeneously quasiconvex outside a ball of radius R1 and
lim‖q‖→+∞ F1(q) =∞.

(B) For k = 2, 3, lim‖q‖→+∞
∥∥DkF2(q)

∥∥ / ‖q‖m−k = 0.
(C) G satisfies H3-(iii).

Then U satisfies H2(m) and H3(m).

Proof. The proof is postponed to Section S2.3.

To show that the condition (20) of Proposition 4 is satisfied under H3(m),
we rely on the following important result which implies that the probability
of accepting a move goes to 1 as ‖q‖ → ∞.
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IRREDUCIBILITY AND GEOMETRIC ERGODICITY OF HMC 13

Proposition 7. Assume H3(m) for some m ∈ (1, 2]. Let γ ∈ (0,m− 1).

(a) If m ∈ (1, 2), for all T ∈ N∗, h ∈ R∗+, there exists RH ∈ R+ such that

for all q0, p0 ∈ Rd, ‖q0‖ ≥ RH and ‖p0‖ ≤ ‖q0‖γ, H(Φ
◦(T )
h (q0, p0)) −

H(q0, p0) ≤ 0.
(b) If m = 2, there exists S̄ > 0 such that for any T ∈ N∗ and h ∈(

0, S̄/T 3/2
]
, there exists RH ∈ R+ satisfying for all q0, p0 ∈ Rd, ‖q0‖ ≥

RH and ‖p0‖ ≤ ‖q0‖γ, H(Φ
◦(T )
h (q0, p0))−H(q0, p0) ≤ 0.

Proof. The proof is postponed to Section S2.4.

This result means that far in the tail the HMC proposal are ”inward”.
We illustrate the result of Proposition 7-(a) in Figure 1 for U given by
q 7→ (‖q‖2 + δ)κ for κ = 3/4, h = 0.9 and p0 ∈ Rd, ‖p0‖ = 1. Note that this
potential satisfies the assumptions of Proposition 7. We can observe that
choosing the different initial conditions q0 with increasing norm imply that

T̃ = max{k ∈ N;H(Φ
◦(k)
h (q0, p0))−H(q0, p0) < 0} increases as well.

0 5 10 15 20
iterations k

||q0 ||=100

0 5 10 15 20
iterations k

||q0 ||=1000

0 5 10 15 20
iterations k

||q0 ||=10000

(H(qk ,pk ))k∈
{
0,…,T

}
H(q0 ,p0 )

Figure 1. Behaviour of (H(Φ
◦(k)
h (q0, p0)))k∈{0,...,T} for different initial conditions q0.

However, in the case m = 2, Proposition 7-(b) only implies that the HMC
proposal is inward only if the step size h is sufficiently small with respect
to the number of leapfrog step T , i.e. is of order O(T−3/2). To relax this
condition, we strengthen H3(2) by assuming that U is a smooth perturbation
of a quadratic function.

H4. There exist G : Rd → R, continuously differentiable, and a positive
definite matrix Π such that for any q ∈ Rd, U(q) = 〈Πq, q〉 /2 + G(q) and
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14 A. DURMUS, É. MOULINES, E. SAKSMAN

there exist A5 ≥ 0 and % ∈ [1, 2) such that for any q, x ∈ Rd,

(25)
|G(q)| ≤ A5(1 + ‖q‖)% , ‖∇G(q)‖ ≤ A5(1 + ‖q‖)%−1 ,

‖∇G(q)−∇G(x)‖ ≤ A5 ‖q − x‖ .

Note that it is straightforward to check that under H4, the conditions H
1(1) and H2(2) hold.

The following result shows that it is enough that the decomposition re-
quired in H4 asymptotically holds.

Proposition 8. Assume that there exist Γ : Rd → Rd×d and G : Rd →
R continuously differentiable such that for any q ∈ Rd, U(q) = 〈Γ(q)q, q〉 /2+
G(q) with G satisfying (25) and there exist a positive definite matrix Π ∈
Rd×d, CΓ ≥ 0 and εΓ > 0 satisfying for any q, x ∈ Rd,

(26) ‖Γ(q)−Π‖ ≤ CΓ(1 + ‖q‖)−εΓ , ‖DΓ(q)‖ ≤ CΓ(1 + ‖q‖)−1−εΓ

(27) ‖DΓ(q)−DΓ(x)‖ ≤ CΓ ‖q − x‖ /(1 + ‖q‖ ∧ ‖x‖)2 .

Then U satisfies H4. 26 27

Proof. The proof is postponed to Section S2.5.

Proposition 9. Assume H4 and let γ ∈ (0, 1). There exists a constant
S̄ > 0 such that for all T ∈ N∗, h ∈

(
0, S̄/T

]
, there exists RH ∈ R+ such

that for all q0, p0 ∈ Rd, ‖q0‖ ≥ RH and ‖p0‖ ≤ ‖q0‖γ, H(Φ
◦(T )
h (q0, p0)) −

H(q0, p0) ≤ 0.

Proof. The proof is postponed to Section S2.6.

We now can establish the geometric ergodicity of the HMC sampler.

Theorem 10. (a) If H 2(m) and H 3(m) hold for some m ∈ (1, 2),
then for all a ∈ R∗+, T ∈ N∗ and h > 0, the HMC kernel Ph,T is
Va-uniformly geometrically ergodic, where Va is defined by (21).

(b) If H2(2) and H3(2) hold, then there exists S̄ > 0 such that for all a ∈
R∗+, T ∈ N∗ and h ∈

(
0, S̄/T 3/2

)
, Ph,T is Va-uniformly geometrically

ergodic.
(c) If H4 holds, then there exists S̄ > 0 (depending only on Π and A5) such

that for all a ∈ R∗+, T ∈ N∗ and h ∈
(
0, S̄/T

)
, Ph,T is Va-uniformly

geometrically ergodic.
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IRREDUCIBILITY AND GEOMETRIC ERGODICITY OF HMC 15

Proof of Theorem 10. It is enough to consider (a) as the proof of (b)
and (c) follows exactly the same lines taking S̄ small enough. Proposition 5
shows that for all T ∈ N∗, h ∈ R∗+, and a ∈ R∗+, there exist λ ∈ [0, 1) and
b ∈ R+ such that the Foster-Lyapunov drift condition Kh,TVa ≤ λVa + b is
satisfied. By Proposition 7, there exists RH ≥ 0 such that for all q ∈ Rd,
‖q‖ ≥ RH , ∫

R(q)
Kh,T (q,dz) ≤ (2π)−d/2

∫
{‖p‖≥‖q‖γ}

e−‖p‖
2/2dp ,

for γ ∈ (0,m− 1) where R(q) =
{
z ∈ R2d : α̃H(q, z) < 1

}
(see (17)), which

implies that

lim
M→+∞

sup
‖q‖≥M

∫
R(q)

Kh,T (q,dz) = 0 ,

Since Va is norm-like, Proposition 4 implies that for all T > 0 and h > 0,
there exists λ̃ and b̃ (depending upon a, h and T ) such that Ph,TVa ≤ λ̃Va+b̃.
For all M ≥ 0 the level sets {Va ≤ M} are compact and hence small by
Theorem 2. [7, Corollary 14.1.6] then shows that there exists a small set
C, λ̌ ∈ [0, 1) and b̌ ∈ [0, 1) such that Ph,TVa ≤ λ̌Va + b̌1C. Since Ph,T is
aperiodic, the result follows from [7, Theorem 15.2.4].

We finally consider the case where the number of leapfrog steps is a ran-
dom variable independent of the current state.

Theorem 11. (a) If H2(m) and H3(m) hold for m ∈ (1, 2), then for
all probability distributions $$$ = (ωi)i∈N∗ on N∗, all sequences h =
(hi)i∈N∗ of positive numbers, and a ∈ R∗+, the randomized kernel Ph,$$$

(13) is Va-uniformly geometrically ergodic, where Va is defined by (21).
(b) If H2(2) and H3(2) hold, then there exists S̄ > 0 such that for all prob-

ability distributions $$$ = (ωi)i∈N∗ on N∗, all sequences h = (hi)i∈N∗

satisfying maxi∈supp($$$) i
3/2hi ≤ S̄, and a ∈ R∗+, Ph,$$$ is Va-uniformly

geometrically ergodic.
(c) If H4 holds, then there exists S̄ > 0 (depending only on Π and A5) such

that for all probability distributions $$$ = (ωi)i∈N∗ on N∗, all sequences
h = (hi)i∈N∗ satisfying maxi∈supp($$$) ihi ≤ S̄, and a ∈ R∗+, Ph,$$$ is
Va-uniformly geometrically ergodic.

Proof. It is enough to consider (a) as the proofs of (b) and (c) are along
the same lines. Set a ∈ R∗+. It is established in the proof of Theorem 10 that
for all i ∈ N∗ Pi,hi satisfies a Foster-Lyapunov drift condition: there exists
λ̌i ∈ [0, 1) and b̌i < ∞ such that Pi,hiVa ≤ λiVa + bi, By Corollary 3, Ph,$$$
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16 A. DURMUS, É. MOULINES, E. SAKSMAN

is irreducible and aperiodic and all the compact sets are small. We conclude
by applying [7, Theorem 15.2.4].

3.2. Comparison with the literature. [15, Theorem 2.1], establishes ge-
ometric ergodicity of the HMC kernel but under an implicit assumption
on the behaviour of the acceptance rate (see [15, assumption (A3)]). Our
conditions are directly verifiable on the potential U .

[18, 19] mainly study different versions of the unadjusted versions of the
HMC (based on the Verlet integrator but omitting the Metropolis-Hastings
step). These articles provide quantitative results (as opposed to our results
which are qualitative) with an explicit dependence on the dimension d, but
under stringent assumptions on the target distribution, which is assumed to
be strongly log-concave.

Our conditions are different from those given by [4] to establish the ge-
ometric ergodicity of the idealized randomized HMC, for which the Hamil-
tonian flow (1) is assumed to be known. In such cases, the proposals are
always accepted, which considerably simplifies the proof: by far the most
difficult part of the evidence is indeed to show that the acceleration rate
tends towards 1. The conditions in [4] are as follows:

(i)
∫
Rd ‖q‖

2 dπ(q) < +∞,
(ii) there exist C1 ∈ (0, 1) and C2 > 0 such that for all q ∈ Rd

(28)

(1/2) 〈∇U(q), q〉 ≥ C1U(q)+
(τ−1C1/4)2 + τ−2C1(1− C1)/4

2(1− C1)
‖q‖2−C2 ,

where τ > 0 is the duration parameter of the RHMC algorithm.

Note that these conditions assumed that the tails of the target density are
lighter than those of a Gaussian. In comparison, our results can be applied
to sub-quadratic potentials. In addition, it can be shown that HMC is not
geometrically ergodic under (28): a counter-example is given below.

The main difference with the setting of [4] is that HMC has a accep-
tance/rejection step and the integrated acceptance ratio

q 7→
∫
Rd
αH{(q, p),Φ◦(T )

h (q, p)}e−‖p‖
2/2(2π)−d/2dp

must not go to 0 as ‖q‖ goes to +∞. Assumptions H3 and H4 are required
to control the integrated acceptance ratio. Indeed, [26, Theorem 5.1] shows
that a an irreducible Markov kernel P on (Rd,B(Rd)) is not geometrically
ergodic with respect to an invariant measure µ if

(29) inf
{
δ > 0 : µ({q ∈ Rd : P (q, {q}) ≥ δ}) = 0

}
= 1
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IRREDUCIBILITY AND GEOMETRIC ERGODICITY OF HMC 17

Consider the target density π with potential U given for all q = (q1, q2) ∈ R2

by

(30) U(q) = − log(e−q
2
1−5q22 + e−5q21−q22 ) .

Note that U satisfies the condition (28). On the contrary, we may show
that (29) holds, and therefore HMC is not geometrically ergodic for such
a potential U . However, the detailed calculations are very technical and
not particularly informative and we prefer to present a numerical evidence
that (29) holds. Indeed, Figure 2 displays numerical computations of the

mean acceptance ratio,
∫
R2 αH{(q, p),Φ◦(T )

h (q, p)}e−‖p‖
2/2(2π)−1dp = 1 −

Ph,T (q, {q}) for q1 ∈ {200+j50, j = 0, . . . , 6}, q2 ∈
[
q1 + 10−4, q1 + 2 · 10−4

]
and T = 1 which corresponds to MALA. We can observe that the larger q1,
the smaller 1 − Ph,T (q, {q}), which illustrates that (29) holds for the HMC
kernel.

Figure 2.

However our result can be applied to d-dimensional Gaussian mixtures
with a dominating precision matrix. Consider potentials given for any q ∈ Rd
by

U(q) = − log

{
N∑
i=1

wi exp (−〈Πi(q − qi), q − qi〉 /2)

}
,

where for any i ∈ {1, . . . , N}, wi > 0 and
∑N

i=1wi = 1, qi ∈ Rd, Πi is a
positive definite matrix. Assume that Πi − Π1 is positive definite for i ∈
{2, . . . , N}. Indeed q 7→ 〈Π1(q − q1), q − q1〉 /2 and its first and second order
partial derivatives are bounded functions and therefore H4 is satisfied which
shows that the conclusions of Theorem 10-(c) hold. Note that the Gaussian
mixture we consider in (30) has no dominating precision matrix.

[2] is more closely related to our work. [2] studies the same (metropolized)
HMC with a Verlet integrator. [2] evaluates the mixing time (with respect to
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18 A. DURMUS, É. MOULINES, E. SAKSMAN

a carefully designed Kantorovitch distance) for a target distributions which
are log-concave outside a compact set. Two types of results are established.
[2, Theorem 2.4, 2.7] establish a contraction for the HMC kernel for smooth
potential function U (U should be 4 times continuously differentiable with
bounded second, third and fourth differential) and additional conditions
on the stepsize and the number of integration steps. Moreover, this result
holds only if the initial points are in a compact set. The second result [2,
Theorem 2.12] establishes explicit complexity bounds in a specially crafted
Kantorovitch distance of order 1, i.e. given a precision parameter ε > 0, [2,
Theorem 2.12] gives a number of iterations n which is sufficient to ensure
that the Kantorovitch distance of order 1 between the n-th iterate of HMC
and the target distribution π is smaller than ε. Note that the discretization
step and the number of iterates are functions of the total number of samples:
therefore, the nature of this result is different from ours. Furthermore, com-
pared to [2] we establish convergence in total variation distance or V -norm
and not in some Kantorovitch distance.

4. Proofs of Section 2. Note that a simple induction (see [15, Propo-
sition 4.2]) implies that for all (q0, p0) ∈ Rd ×Rd and k ∈ {1, . . . T}, the kth

iteration of the leap-frog integration, (qk, pk) = Φ
◦(k)
h (q, p), where Φ

◦(k)
h is

defined by (3), takes the form

qk = q0 + khp0 −
kh2

2
∇U(q0)− h2Ξh,k(q0, p0)(31)

pk = p0 −
h

2

{
∇U(q0) +∇U ◦ Φ̃

◦(k)
h (q0, p0)

}
− h

k−1∑
i=1

∇U ◦ Φ̃
◦(i)
h (q0, p0) ,

where Ξh,k : Rd × Rd → Rd is given for all (q, p) ∈ Rd × Rd by

(32) Ξh,k(q, p) =

k−1∑
i=1

(k − i)∇U ◦ Φ̃
◦(i)
h (q, p) .

4.1. Proof of Theorem 1 . We first prove (9). Under the assumption
that U is twice continuously differentiable, it follows by a straightforward

induction, that for all h > 0 and q ∈ Rd, p 7→ Φ̃
◦(k)
h (q, p), defined by (4),

and p 7→ Ξh,k(q, p), defined by (32), are continuously differentiable and for
all (q, p) ∈ Rd × Rd,

Jp,Ξh,T (q, p) =

T−1∑
i=1

(T − i)
{
∇2U ◦ Φ̃

◦(i)
h (q, p)

}
J
p,Φ̃
◦(i)
h

(q, p) ,
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IRREDUCIBILITY AND GEOMETRIC ERGODICITY OF HMC 19

where for all q ∈ Rd, Jp,Ξh,k(q, p) (J
p,Φ̃
◦(h)
i

(q, p) respectively) is the Jacobian

of the function p̃ 7→ Ξh,k(q, p̃) (p̃ 7→ Φ̃
◦(h)
i (q, p̃) respectively) at p ∈ Rd.

Under H 1, supx∈Rd ‖∇2U(x)‖ ≤ L1, therefore by Lemma S3, we have
that for any T ∈ N∗ and h > 0,

(33) sup
(q,p)∈Rd×Rd

∥∥Jp,Ξh,T (q, p)
∥∥ ≤ T ({1 + hL

1/2
1 ϑ1(hL

1/2
1 )}T − 1)/h .

For any q ∈ Rd, T ∈ N∗ and h > 0, define φq,T,h(p) for all p ∈ Rd by

φq,T,h(p) = p− (h/T )Ξh,T (q, p) .

It is a well known fact (see for example [9, Exercise 3.26]) that if

(34) sup
(q,p)∈Rd×Rd

(h/T )
∥∥Jp,Ξh,T (q, p)

∥∥ < 1 ,

then for any q ∈ Rd, φq,T,h is a diffeomorphism and therefore by (31), the

same conclusion holds for p 7→ Φ̃
◦(T )
h (q, p). Using (33), if T ∈ N∗ and h > 0

satisfies (8), then the condition (34) is verified and (9) follows.

Denoting for any q ∈ Rd by Ψ̄
(T )
h (q, ·) : Rd → Rd the continuously dif-

ferentiable inverse of p 7→ Φ̃
◦(T )
h (q, p) and using a change of variable with

Ψ̄
(T )
h (q, ·) in (6) concludes the proof of (10).
We now show that Th,T satisfies the condition which implies that Ph,T

is a T-kernel. We first establish some estimates on the function (q, p) 7→
Ψ̄

(T )
h (q, p). By (34) and (31), for any q, p, v ∈ Rd, there exists ε ∈ (0, 1) such

that ‖Φ̃◦(T )
h (q, p) − Φ̃

◦(T )
h (q, v)‖ ≥ (hT )‖φq,T,h(p) − φq,T,h(v)‖ ≥ (hT )(1 −

ε) ‖p− v‖ which implies that that there exists C ≥ 0 satisfying

(35)

∥∥∥Ψ̄
(T )
h (q, p)− Ψ̄

(T )
h (q, v)

∥∥∥ ≤ (1− ε)−1 ‖v − p‖ ,∥∥∥Ψ̄
(T )
h (q, p)

∥∥∥ ≤ C {‖p‖+
∥∥∥Φ̃
◦(T )
h (q, 0)

∥∥∥} .

In addition, for q, x, p ∈ Rd, we have setting q̃ = Ψ̄
(T )
h (q, p) that

‖Ψ̄(T )
h (q, p)− Ψ̄

(T )
h (x, p)‖ = ‖q̃ − Ψ̄

(T )
h (x, Φ̃

◦(T )
h (q, q̃))‖

= ‖Ψ̄(T )
h (x, Φ̃

◦(T )
h (x, q̃))− Ψ̄

(T )
h (x, Φ̃

◦(T )
h (q, q̃))‖ ,

which implies by (35) and Lemma S1 that there exists C ≥ 0 satisfying

(36)
∥∥∥Ψ̄

(T )
h (q, p)− Ψ̄

(T )
h (x, p)

∥∥∥ ≤ C ‖q − x‖ .
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We now can prove that Th,T is the continuous component of Ph,T . First
by (11), for all B ∈ B(Rd),

Th,T (q,B) ≥ (2π)−d/2 Leb(B)× inf
q̄∈B

{
ᾱH(q, q̄)e−‖Ψ̄q(q̄)‖

2
/2D

Ψ̄
(T )
h (q,·)(q̄)

}
,

with the convention 0×+∞ = 0 and

ᾱH(q, q̄) = αH

{
(q, Ψ̄

(T )
h (q, q̄)),Φ

◦(T )
h (q, Ψ̄

(T )
h (q, q̄))

}
.

Since the function (q, p) 7→ (Φ̃
◦(T )
h (q, p), Ψ̄

(T )
h (q, p),D

Ψ̄
(T )
h (q,·)(p)) is contin-

uous on Rd × Rd by Lemma S1, (35) and (36), and for any q, p ∈ Rd,
J

Φ̃
◦(T )
h (q,·)(Ψ̄

(T )
h (q, p))J

Ψ̄
(t)
h (q,·)(p) = In, we get that Th,T (q,B) > 0 for all

q ∈ Rd and all compact set B satisfying Leb(B) > 0. Therefore, using that
the Lebesgue measure is regular which implies that for any A ∈ B(Rd)
with Leb(A) > 0, there exists a compact set B ⊂ A, Leb(B) > 0, we can
conclude that Ph,T is irreducible with respect to the Lebesgue measure. In
addition, we get Th,T (q,Rd) > 0, and therefore we obtain that Ph,T is ape-
riodic. Similarly we get that any compact set B is (1,LebB)-small, where
LebB(·) = Leb(B ∩ cdot).

It remains to show that for any B ∈ B(Rd), q 7→ Th,T (q,B) is lower semi-
continuous which is a straightforward consequence of Fatou’s Lemma and

that for any p ∈ Rd, q 7→ (Φ
◦(T )
h (q, p), Ψ̄

(T )
h (q, p),D

Ψ̄
(T )
h (q,·)(p)) is continuous.

Finally, the last statements of (ii) follows from Proposition S11 in [10,
Section S3] which implies that Ph,T is Harris recurrent and [21, Theorem
13.0.1] which implies (12).

4.2. Proof of Theorem 2. We use Corollary 14 of Appendix A. Indeed
Ph,T is of form (37) and it is straightforward to check that it satisfies G1

(note that Lemma S1 shows that Φ
◦(T )
h is a Lipshitz function on R2d).

We now check that Ph,T satisfies G2(R, 0,M) for all R,M ∈ R∗+ using
Proposition 15. By (31), for all T ∈ N∗, h > 0, q, p ∈ Rd,

Φ̃
◦(T )
h (q, p) = Thp+ gq,T,h(p)

where gq,T,h(p) = q− (Th2/2)∇U(q)−h2Ξh,T (q, p) where Ξh,T is defined by
(32). Lemma S3 shows that for any T ∈ N∗ and h > 0, it holds that

sup
p,v,q∈Rd

‖gq,T,h(p)− gq,T,h(v)‖
‖p− v‖

≤ Th[{1 + hL
1/2
1 ϑ1(hL

1/2
1 )}T − 1] ,
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which implies that the condition Proposition 15-(i) is satisfied. To check that
condition Proposition 15-(ii) holds, we consider separately the two cases:
β < 1 and β = 1.

• Consider first the case β < 1. By H1-(ii), for any T ∈ N∗ and h > 0, we
get

‖Ξh,T (q, p)‖ ≤ T
T−1∑
i=1

∥∥∥∇U ◦ Φ̃
◦(i)
h (q, p)

∥∥∥ ≤ M1T
T−1∑
i=1

{
1 +

∥∥∥Φ̃
◦(i)
h (q, p)

∥∥∥β} .

Hence, by Lemma S2-(i) there exists C ≥ 0 such that for all R ∈ R∗+ and
q, p ∈ Rd, ‖q‖ ≤ R,

‖gq,T,h(p)‖ ≤ C
{

1 +Rβ + ‖p‖β
}
,

which implies that condition (ii) of Proposition 15 holds for any T ∈ N∗ and
h > 0.
• Consider now the case β = 1. For any T ∈ N∗, h > 0, q, p ∈ Rd we get
using H1-(i)

‖gq,T,h(p)‖ ≤ ‖q‖+ Th2L1 ‖q‖ /2 + Th2 ‖∇U(0)‖ /2
+ h2 ‖Ξh,T (q, p)− Ξh,T (q, 0)‖+ h2 ‖Ξh,T (q, 0)‖ .

Therefore using Lemma S3, for any q, p ∈ Rd, ‖q‖ ≤ R for R ≥ 0, for any
T ∈ N∗ and h > 0 satisfying (8), there exists C ≥ 0 such that

‖gq,T,h(p)‖ ≤ C + hT [{1 + hL
1/2
1 ϑ1(hL

1/2
1 )}T − 1] ‖p‖ ,

showing that condition (ii) of Proposition 15 is satisfied.

Therefore, Proposition 15 can be applied and for any T ∈ N∗ and h > 0
if β < 1 and for any h > 0 and T ∈ N∗ satisfying (8) if β = 1, Ph,T satisfies
G2(R, 0,M) for all R,M ∈ R∗+. Corollary 14 concludes the proof of (a) and
(b). The last statement then follows from [21, Theorem 14.0.1].

APPENDIX A: IRREDUCIBILITY FOR A CLASS OF ITERATIVE
MODELS

In this Section we establish the irreducibility of a Markov kernel associated
to a random iterative model. These results are of independent interest. Let
f : Rd × Rd → Rd and α : Rd × Rd → [0, 1] be Borel measurable functions
and φ : Rd → [0,+∞] be a probability density with respect to the Lebesgue
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22 A. DURMUS, É. MOULINES, E. SAKSMAN

measure. Consider the Markov kernel K defined for all x ∈ Rd and A ∈ B(Rd)
by

(37) K(x,A) =

∫
Rd
1A (f(x, z))α(x, z)φ(z)dz + {1− ᾱ(x)}δx(A) ,

where ᾱ(x) =
∫
Rd α(x, z)φ(z)dz. Define for all x ∈ Rd, fx : Rd → Rd by

fx = f(x, ·).
First, we give a result from geometric measure theory together with a

proof for the reader’s convenience, which will be essential for the proof of
the statements of this section. Let U ⊂ Rd be an open set and Θ : U → Rd
be a measurable function such that there exist y0, ỹ0 ∈ Rd and M,M̃ > 0
satisfying B(ỹ0, M̃) ⊂ U and

(38) B(y0,M) ⊂ Θ(B(ỹ0, M̃)) .

Define the measure λΘ on (Rd,B(Rd)) by setting for any A ∈ B(Rd)

λΘ(A)
def
= Leb

{
Θ−1(A) ∩ B(ỹ0, M̃)

}
.

Note that λΘ is a finite measure. Therefore by the Lebesgue decomposi-

tion theorem (see [27, Section 6.10]) there exist two measures λ
(a)
Θ , λ

(s)
Θ on

(Rd,B(Rd)), which are absolutely continuous and singular with respect to

the Lebesgue measure on Rd respectively, such that λΘ = λ
(a)
Θ + λ

(s)
Θ .

Proposition 12. Let U ⊂ Rd be open and Θ : U → Rd be a Lips-

chitz function satisfying (38). For any version φΘ of the density of λ
(a)
Θ with

respect to the Lebesgue measure on Rd, it holds

φΘ(y) ≥ 1B(y0,M)(y) ‖Θ‖−dLip , Leb-a.e.

Proof. Denote by L = ‖Θ‖Lip. Let y ∈ B(y0,M). By (38), we may

pick z ∈ B(ỹ0, M̃) such that Θ(z) = y. Let δ0 > 0 be such that B(z, δ0/L) ⊂
B(ỹ0, M̃). Since Θ is Lipschitz continuous, for all δ ∈ R∗+, Θ(B(z, δ/L)∩U) ⊂
B(y, δ). Hence, for all δ ∈ (0, δ0], we have

λΘ(B(y, δ)) ≥ L−d Leb(B(z, δ)) = L−d Leb(B(y, δ)) .

The claim follows from the differentiation theorem for measures, see [27,
Theorem 7.14].

We can now state our main results. Let R,M ∈ R∗+ and y0 ∈ Rd. Consider
the following assumptions.
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G 1. φ and α are lower semicontinuous and positive on Rd and R2d

respectively.

G2 (R, y0,M). (i) There exists Lf ∈ R+ such that for all x ∈ B(0, R),
fx is Lf -Lipschitz, i.e. for all z1, z2 ∈ Rd, ‖fx(z1)− fx(z2)‖ ≤ Lf ‖z1 − z2‖.
(ii) There exist ỹ0 ∈ Rd and M̃ ∈ R∗+, such that for all x ∈ B(0, R),

B(y0,M) ⊂ fx(B(ỹ0, M̃)).

Theorem 13. Assume G 1 and that there exist y0 ∈ Rd, R > 0 and
M > 0 such that G2(R, y0,M) is satisfied. Then B(0, R) is 1-small for K:
for all x ∈ B(0, R) and A ∈ B(Rd),

K(x,A) ≥ L−df min
(x,z)∈B(0,R)×B(ỹ0,M̃)

{α(x, z)φ(z)}Leb {A ∩ B(y0,M)} ,

where (ỹ0, M̃) ∈ Rd × R∗+ is defined in G2(R, y0,M).

Proof. For all x ∈ B(0, R) and A ∈ B(Rd) we get

K(x,A) =

∫
Rd
1A (f(x, z))α(x, z)φ(z)dz =

∫
Rd
1f−1

x (A) (z)α(x, z)φ(z)dz

≥ min
(x,z)∈B(0,R)×B(ỹ0,M̃)

{α(x, z)φ(z)}Leb
{
f−1
x (A) ∩ B(ỹ0, M̃)

}
.

The proof follows from Proposition 12 and G 2(R, y0,M)-(i) which imply

Leb
{
f−1
x (A) ∩ B(ỹ0, M̃)

}
≥ L−df Leb {A ∩ B(y0,M)}.

The following Corollary is a straightforward consequence of Theorem 13.

Corollary 14. Assume G1 and that there exists (y0,M) ∈ Rd × R∗+
such that for all R ∈ R∗+ G 2(R, y0,M). Then K is irreducible with irre-
ducibility measure Leb {· ∩ B(y0,M)}. In addition, all the compact sets are
1-small.

In the next proposition, we give examples of functions f which satisfy G
2.

Proposition 15. Let g a function from Rd × Rd to Rd and R ∈ R∗+.
Assume that

(i) there exists Lg,R ∈ R+ such that for all z1, z2, x ∈ Rd, ‖x‖ ≤ R,

‖g(x, z1)− g(x, z2)‖ ≤ Lg,R ‖z1 − z2‖ .
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24 A. DURMUS, É. MOULINES, E. SAKSMAN

(ii) there exist CR,0, CR,1 ∈ R+ such that for all x, z ∈ Rd, ‖x‖ ≤ R

‖g(x, z)‖ ≤ CR,0 + CR,1 ‖z‖

Let b ∈ R and define fg : Rd × Rd for all x, z ∈ Rd by

fg(x, z) = bz + g(x, z) .

If ‖b‖ > CR,1, then fg satisfies G2(R, 0,M) for all M ∈ R∗+ with ỹ0 = 0
and

(39) M̃ = {M + CR,0}/(‖b‖ − CR,1) .

We preface the proof by recalling some basic notions of degree theory. Let
D be a bounded open set of Rd. Let f : D→ Rd be a continuous function on
D continuously differentiable on D. An element x ∈ D is said to be a regular
point of f if the Jacobian matrix of f at x, Jf (x), is invertible. An element
y ∈ f(D) is said to be a regular value of f if any x ∈ f−1({y}) is a regular
point.

Let f : D → Rd be a continuous function, C∞-smooth on D. Let y ∈
Rd \ f(∂D) be a regular value of f . It is shown in [24, Proposition and
Definition 1.1] that the set f−1({y}) is finite. The degree of f at y is defined
by

deg(f,D, y) =
∑

x∈f−1({y})

sign {det (Jf (x))} .

Proposition 16 ([24, Proposition and Definition 2.1]). Let f : D→ Rd
be a continuous function and y ∈ Rd \ f(∂D).

(a) Then there exists g ∈ C(D,Rd) ∩ C∞(D,Rd) such that y is a regular
value of g and supx∈D |f(x)− g(x)| < dist(y, f(∂D)).

(b) For all functions g1, g2 : D→ Rd satisfying (a),

deg(g1,D, y) = deg(g2,D, y) .

Under the assumptions of Proposition 16, the degree of f at y is then
defined for any g : D→ Rd satisfying (a) by

deg(f,D, y) = deg(g,D, y) .

Proposition 17 ([24, Proposition 2.4]). Let f, g : D→ Rd be continuous
functions. Define H : [0, 1] × Rd → Rd for all t ∈ [0, 1] and x ∈ Rd by
H(t, x) = tf(x) + (1− t)g(x). Let y ∈ Rd \H([0, 1]× ∂D). Then

deg(f,D, y) = deg(g,D, y) .
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We have now all the necessary results to prove Proposition 15.

Proof of Proposition 15. For all x ∈ Rd, denote by fgx(z) = fg(x, z).
Since fg(x, z) = bz + g(x, z) and g(x, ·) is Lipschitz with a Lipschitz con-
stant which is uniformly bounded over the ball B(0, R), fgx is Lipschitz with
bounded Lipschitz constant over this ball. Hence G2(R, 0,M)-(i) holds.

Let M ∈ R∗+. We show that for all x ∈ B(0, R), B(0,M) ⊂ fgx(B(0, M̃)),

where M̃ is given by (39), which is precisely G2(R, 0,M)-(ii).
Let x ∈ B(0, R) and consider the continuous homotopy Hg : [0, 1] × Rd

between the functions z 7→ bz and fgx defined for all t ∈ [0, 1] and z ∈ Rd by

Hg(t, z) = tbz + (1− t)fgx(z) = bz + (1− t)g(x, z) .

Then by (ii), since |b| ≥ CR,1, for all t ∈ [0, 1] and z 6∈ B(0, M̃), where M̃ is
given by (39),

|Hg(t, z)| ≥ |bz| − (1− t) {CR,0 + CR,1 |z|} ≥M .

In particular, we have Hg([0, 1]×∂ B(0, M̃)) ⊂ Rd\B(0,M). Let z ∈ B(0,M),
then by Proposition 17 we have

deg(fgx ,B(0, M̃), z) = deg(b Id,B(0, M̃), z) = 1 .

Besides, by [24, Corollary 2.5, Chapter IV], deg(fgx ,B(0, M̃), z) 6= 0 implies
that there exists y ∈ B(0, M̃) such that fgx(y) = z. Finally G2(R, 0,M)-(ii)
follows since this result holds for all z ∈ B(0,M).

(9), (11), (12), (37), (24), (19), (18), (10)
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Centre de Mathématiques Appliquées,
UMR 7641, Ecole Polytechnique,
route de Saclay, 91128 Palaiseau cedex, France.

E-mail: **eric.moulines@polytechnique.edu

University of Helsinki, Department of Mathematics and Statistics,
P.O. Box 68 , FIN-00014 University of Helsinki, Finland
E-mail: †eero.saksman@helsinki.fi

imsart-aos ver. 2014/10/16 file: main.tex date: October 20, 2021

mailto:alain.durmus@ens-paris-saclay.fr
mailto:eric.moulines@polytechnique.edu
mailto:eero.saksman@helsinki.fi

	Introduction 
	Ergodicity of the HMC algorithm
	Geometric ergodicity of HMC
	Main results
	Comparison with the literature

	Proofs of sec:ergodicity-hmc
	Proof of theo:irredharris 
	Proof of theo:irredD

	Irreducibility for a class of iterative models
	References
	Author's addresses

