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Introduction to Markov Chain Monte Carlo methods I Motivations

Bayesian setting (I)

- Let (E , d) be a Polish space endowed with its σ-field B(E).

- In a Bayesian setting, a parameter x ∈ E is embedded with a prior
distribution π and the observations are given by a probabilistic model :

Y ∼ `(·|x)

The inference is then based on the posterior distribution :

π(dx |Y ) =
π(dx)`(Y |x)∫
`(Y |u)π(du)

.

In most cases the normalizing constant is not tractable :

π(dx |Y ) ∝ π(dx)`(Y |x) .
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Introduction to Markov Chain Monte Carlo methods I Motivations

Bayesian setting (II)

Bayesian decision theory relies on minimization problems involving
expectations : ∫

E

L(x , θ)`(Y |x)π(dx)

Generic problem : estimation of an expectation Eπ[f ], where

- π is known up to a multiplicative factor ;

- we do not know how to sample from π (no basic Monte Carlo estimator) ;

- π is high dimensional density (usual importance sampling and accept/reject
inefficient).
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Introduction to Markov Chain Monte Carlo methods I Motivations

Key tool : the rejection sampling

In the case E = Rd , and π has a density with respect to the Lebesgue
measure Lebd , also denoted π.

Assume we know that π(x) ≤ Mν(x) and that we know how to sample from ν.

1. Sample X ∼ ν and U ∼ U([0, 1]).
2. If U ≤ π(X )

Mν(X ) , accept X .
3. Else go to 1.

FIGURE: *

Illustration of the Accept-Reject method [Cappé, Moulines, Ryden 2005].
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Introduction to Markov Chain Monte Carlo methods I Motivations

Inefficiency of the rejection sampling

- Hard to find a probability ν such that π ≤ Mν (especially for high
dimensional settings).

- On one hand M−1 is the rate of acceptance so that M has to be as close to
1 as possible.
But on the other hand, in practice M is exponentially large in the dimension.

Alternative : MCMC method !
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Introduction to Markov Chain Monte Carlo methods I Some Markov chain theory

Some Markov chain theory (I)

Definition
Let P : E × B(E)→ R+. P is a Markov kernel if

- for all x ∈ E , A 7→ P(x ,A) is probability measure on E ,

- for all A ∈ B(E), x 7→ P(x ,A) is measurable from E to R.
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Introduction to Markov Chain Monte Carlo methods I Some Markov chain theory

Some Markov chain theory (II)

Some simple properties :

- If P1 and P2 is two Markov kernel, we can define a new Markov kernel,
denoted P1P2, by for all x ∈ E and A ∈ B(E) :

P1P2(x ,A) =
∫

E

P1(x , dz)P2(z,A) .

- If P is a Markov kernel and ν a probability measure on E , we can define a
probability measure, denoted νP, by for all A ∈ B(E) :

νP(A) =
∫

E

ν(dz)P(z,A) .

- Let P be a Markov kernel on E . For f : E → R+ measurable, we can define
a measurable function Pf : E → R̄+ by

Pf (x) =
∫

E

P(x , dz)f (z) .
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Introduction to Markov Chain Monte Carlo methods I Some Markov chain theory

Some Markov chain theory (III)

Invariant probability measure : π is said to be an invariant probability
measure for the Markov kernel P if πP = P.

Theorem (Meyn and Tweedie, 2003, Ergodic theorem)
With some conditions on P, we have for any f ∈ L1(π),

π̂(f ) =
1
n

n∑
i=1

f (Xi ) −→
π-a.s.

∫
f (x)π(dx) .
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Introduction to Markov Chain Monte Carlo methods I Some Markov chain theory

Conditions of the Theorem

Definition

- Irreducibility : there exists a measure ν such that, for all x and all A such
that ν(A) > 0, there exists n ∈ N∗ s.t. Pn(x ,A) > 0.

- Harris recurrence : P is Harris recurrent : for all A ∈ B(E) satisfying
π(A) > 0, for all x in A

P

[
+∞∑
k=1

1A(Xk ) = +∞|X 0 = x

]
= 1 .
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Introduction to Markov Chain Monte Carlo methods I Some Markov chain theory

MCMC : rationale (I)

The Theorem above gives the following idea to approximate Eπ[f ] :

- Find a kernel P with invariant measure π, from which we can efficiently
sample.

- Sample a Markov chain X1, . . . ,Xn with kernel P and compute

π̂(f ) =
1
n

n∑
i=1

f (Xi )

to approximate Eπ[f ] =
∫

f (x)π(dx).

⇒ How to find a Markov kernel P with invariant measure π ?

page 14 A. Durmus Geometric ergodicity in Wasserstein distance



Introduction to Markov Chain Monte Carlo methods I Some Markov chain theory

MCMC : rationale (II)

Simple condition to check that π is invariant for P : reversibility.

Definition
P is reversible with respect to π if for all A1,A2 ∈ B(E) :∫

A1

∫
A2

π(dz1)P(z1, dz2) =
∫

A1

∫
A2

π(dz2)P(z2, dz1) .

- Note the variables z1 and z2 are switched.

- For A1 = E and A2 = A, we get π(A) = πP(A).
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Introduction to Markov Chain Monte Carlo methods I The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm (I)

The Metropolis-Hastings algorithm gives a generic method to build Markov
kernels P reversible w.r.t. π in the case where :

- E = Rd .

- Objective target probability π has a density w.r.t. Lebd , also denoted π.

Using of a transition density q(x , y ) w.r.t. Lebd :

- (x , y ) 7→ q(x , y ) is measurable,

- For all x , y 7→ q(x , y ) is a density of a probability measure also denoted
q(x , ·).
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Introduction to Markov Chain Monte Carlo methods I The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm (II)

Given Xk ,

1. Generate Yk+1 ∼ q(·,Xk ).

2. Set

Xk+1 =
{

Yk+1 with probability α(Xk ,Yk+1) ,
Xk with probability 1− α(Xk ,Yk+1) .

where

α(x , y ) = 1 ∧ π(y )
π(x)

q(y , x)
q(x , y )

.

- With this choice of α the algorithm produces a Markov kernel PMH

reversible w.r.t. π.

- “No restriction” on π and q.
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Introduction to Markov Chain Monte Carlo methods I The Metropolis-Hastings algorithm

MH : properties

Simple condition to apply the Ergodic theorem :

- q and π are continuous.

- For all x , y such that π(y ) > 0,

q(x , y ) > 0 .

Consequence :

For any f ∈ L1(π),

π̂(f ) =
1
n

n∑
i=1

f (Xi ) −→
a.s.

∫
f (x)π(x)dx .

Question : can we have a rate of convergence for some f ?
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Introduction to Markov Chain Monte Carlo methods I Uniform ergodicity of the independent sampler

Total variation distance

Definition
For µ, ν two probabilities measure on E , the total variation distance between
µ and ν is given by

Wd0 (µ, ν) = inf
A∈B(E)

|µ(A)− ν(A)| ,

= sup
|f |≤1
|Eµ[f ]− Eν [f ]| .

- Convergence in total variation distance implies the weak convergence.

- Convergence rates in total variation distance imply convergence rates for
Eµn [f ].
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Introduction to Markov Chain Monte Carlo methods I Uniform ergodicity of the independent sampler

Uniform ergodicity

Definition
Let P be a Markov kernel on E , with invariant measure π. P is uniformly
geometrically ergodic is there exists C < +∞, and ρ ∈ (0, 1) such that for all
x ∈ E :

Wd0 (Pn(x , ·), π) ≤ Cρn .

Theorem (Meyn and Tweedie, 2003)
When P satisfy a technical condition (aperiodicity), P is uniformly
geometrically ergodic if and only if there exist δ, ε ∈ (0, 1), n ∈ N∗ and a
probability measure µ such that

∀A ∈ B(E), µ(A) > δ ⇒ inf
x∈A

Pn(x ,A) > ε .

page 22 A. Durmus Geometric ergodicity in Wasserstein distance



Introduction to Markov Chain Monte Carlo methods I Uniform ergodicity of the independent sampler

Uniform ergodicity : the independent case [Hastings 1970] (II)

Theorem ([Roberts, Tweedie 1996], [Mengersen, Tweedie 1996])
If there exists M such that π(z) ≤ Mg(z) then for all x ∈ Rd

Wd0 (Pn
IMH(x , ·), π) ≤

(
1− 1

M

)n

.

1. Expected acceptance probability still is 1/M.

2. But no need to know M to run the algorithm !

3. If the majoration condition does not hold, no uniform ergodicity.
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Introduction to Markov Chain Monte Carlo methods I Uniform ergodicity of the independent sampler

Cauchy vs Normal (I) [Cappé, Moulines, Ryden 2005]

- Target distribution : π(x) ∝ (1 + x2)−1.
- Proposal distribution : g(y ) ∼ N (0, 1).

FIGURE: *

Histogram of IMH with 5000 samples.
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Introduction to Markov Chain Monte Carlo methods I Symmetric Random Walk Metropolis

symmetric Random walk Metropolis-Hastings (I)

- The idea in the RWM is to propose local moves around the current states
and not moves independent of the position.

- The proposal mechanism is given by

Yk+1 = Xk + Zk+1 ,

where Zk+1 is independent of Xk and is distributed according to a probability
measure with a symmetric density q̃.

- The proposal distribution is of the form q(x , y ) = q̃(y − x).
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Introduction to Markov Chain Monte Carlo methods I Symmetric Random Walk Metropolis

symmetric Random walk Metropolis-Hastings (II)

1. Generate Zk+1 from q̃ and set Yk+1 = Xk + Zk+1.

2. Set

Xk+1 =
{

Yk+1 with probability α(Xk ,Yk+1) ,
Xk with probability 1− α(Xk ,Yk+1) .

where

α(x , y ) = 1 ∧ π(y )
π(x)

.
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Introduction to Markov Chain Monte Carlo methods I Symmetric Random Walk Metropolis

Cauchy vs Normal (II) [Cappé, Moulines, Ryden 2005]

- Target distribution : π(x) ∝ (1 + x2)−1.
- Proposal distribution : N (0, 1).

α(x , y ) = 1 ∧ 1 + x2

1 + y2

FIGURE: *

Histogram of RMW with 10000 samples.page 28 A. Durmus Geometric ergodicity in Wasserstein distance



Introduction to Markov Chain Monte Carlo methods I Symmetric Random Walk Metropolis

Another kind of convergence : the geometric ergodicity

1. Using random walk moves prevents from being uniformly geometrically
ergodic [Robert, Casella 2004]. But still, we can have geometric
ergodicity.

2. The condition Wd0 (Pn(x , ·), π) was controlled uniformly in x is relaxed.

Definition
Let P be a Markov kernel with invariant probability measure π. P is
geometrically ergodic if there exists C < +∞, ρ ∈ (0, 1) and a measurable
function V : E → [1,+∞) such that :

Wd0 (Pn(x , ·), π) ≤ CρnV (x), ∀x ∈ E .
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Introduction to Markov Chain Monte Carlo methods I Symmetric Random Walk Metropolis

Conditions to get geometric ergodicity (I)

Definition
A set C ∈ B(E) is said to be m-small for P if there exists ε > 0 and a
probability measure µ such that :

∀A ∈ B(E), inf
x∈C

P(x ,A) ≥ εµ(A) .

Theorem (Meyn and Tweedie 2003)
Let P an irreducible Markov kernel satisfying a technical condition
(aperiodicity).
P is geometrically ergodic if and only if there exists b < +∞, λ ∈ (0, 1) and a
measurable function V : E → [1,+∞) such that for all x ∈ E

PV (x) ≤ λV (x) + b1C(x) ,

where C is a m-small set for P.

page 30 A. Durmus Geometric ergodicity in Wasserstein distance



Introduction to Markov Chain Monte Carlo methods I Symmetric Random Walk Metropolis

Geometric ergodicity of the RMH on R

Theorem (Mengersen and Tweedie, 1994)
Assume that

- π is continuous and symmetric on R, and log-concave in the tail, ie there
exists M, a ∈> 0 such that for all |y | ≥ |x | ≥ M,

log(π(x))− log(π(y )) ≥ a |x − y | ,

- the transition density of the noise q̃ is continuous and positive on R.

Then, PRWM is geometrically ergodic.

The proof follows from the previous theorem applied with V (x) = es|x|.
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Introduction to Markov Chain Monte Carlo methods I Symmetric Random Walk Metropolis

Issues of the geometrical ergodicity in total variation norm

1. In an infinite dimensional setting, Markov chain will typically be not
irreducible. So we cannot apply the previous result to this kind of kernel.

2. The contraction coefficient ρ in the previous theorem is smaller than the
constant ε which appears in the definition of the a small set. Most of the
time, ε is exponentially small in the dimension.
So in high dimensional settings, we can observe poor mixing even if the
chain is geometrically ergodic.

In the following, we try to give some solutions to the second point. We
consider another kind of convergence, which suggests ways to construct
sampler with good mixing rate, even if the dimension is large.
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Geometric ergodicity in Wasserstein distance and application I Geometric ergodicity in Wasserstein distance

Wasserstein distance (I)

Recall (E , d) is a Polish space.
We assume in the following that d is bounded by 1.

Definition

1. Let µ and ν two probability measures on E . λ is a coupling of µ and ν if λ
is a probability on E × E , such that for all A ∈ B(E),

λ(A× E) = µ(A) and λ(E × A) = ν(A) .

The set of the couplings of µ and ν will be denoted C(µ, ν).

2. The Wasserstein metric associated to d , between two probability
measures µ, ν is defined by :

Wd (µ, ν) = inf
λ∈C(µ,ν)

∫
E×E

d(x , y )dλ(x , y ) ,
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Geometric ergodicity in Wasserstein distance and application I Geometric ergodicity in Wasserstein distance

Wasserstein distance (II)

- We get back the the total variation distance when d(x , y ) = d0(x , y ) = 1x 6=y

- The convergence in total variation implies the convergence in Wasserstein
distance but the converse is false.

- The convergence in Wd is equivalent to the weak convergence ; (see e.g.
[Villani, 2009] for details).

So, we generalize the use of the total variation distance.
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Geometric ergodicity in Wasserstein distance and application I Geometric ergodicity in Wasserstein distance

Coupling set

In the following, we adapt the notion of small set to this setting.

Definition
Let P be a Markov kernel on E . Let ∈ B(E × E), and ε ∈ (0, 1).
We say that is a (ε, d)-coupling set for the Markov kernel P if there exists a
kernel K on (E × E ,B(E × E)) satisfying the following conditions

- for all x , y ∈ E , K((x , y ), ·) is a coupling of (P(x , ·),P(y , ·)).

- for all x , y ∈ E ,
Kd(x , y ) ≤ d(x , y ) .

- for all (x , y ) ∈ ,
Kd(x , y ) ≤ (1− ε)d(x , y ) .

If C is a 1-small set, C × C is an (ε, d0)-coupling set.
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Geometric ergodicity in Wasserstein distance and application I Geometric ergodicity in Wasserstein distance

Quantitative bound for geometric ergodicity in Wasserstein distance

We have the following theorem which generalizes and precises the constants
of the theorem about geometric ergodicity in total variation distance.

Theorem
Let P be Markov kernel on E and assume

- There exists a measurable function V : E → [1,+∞), λ ∈ [0, 1) and
b < +∞ such that for all x ∈ E,

PV (x) ≤ λV (x) + b .

- For some δ > 0, the subset

def= {(x , y ) ∈ E × E ,V (x) + V (y ) ≤ (2b + δ)/(1− λ)} ,

is an (ε, d)-coupling.

Then P admits a unique probability measure π and for all x ∈ E

Wd (Pn(x , ·), π) ≤ CρnV (x)

where C < +∞ and ρ ∈ (0, 1), which can be explicitly calculated in function of
ε, λ, b and δ.
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Geometric ergodicity in Wasserstein distance and application I Application to the EI-MALA

Presentation of the EI-MALA (I)

EI-MALA is Metropolis Hasting algorithm, based on the following.

- Let π be the target density and πU (x)dx ∝ e−U(x) dx be an auxiliary
probability measures on Rd .

- Typically, − log(πU ) will be a convex minorant of − log(π). So, we assume
that U is given by

U(x) = (1/2)xT Qx + (x) with Q � 0 .

- Consider the over-damped Langevin SDE associated with πU :

dYt = −Yt dt −Q−1∇ (Yt )dt +
√

2Q−1/2dBt .
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Geometric ergodicity in Wasserstein distance and application I Application to the EI-MALA

Presentation of the EI-MALA (II)

- A stochastic Euler exponential integrator yields to the following
discretization for h ∈ (0, 2) :

Oh(x ,Z1) = x − (h/2)Q−1∇U(x) +
√

h − h2/4 Q−1/2Z1 ,

where Z1 ∼ N (0, Id ).

- It yields to a proposal density qh which can be used in a
Metropolis-Hastings algorithm.

- Given h ∈ (0, 2) and Xn,
-.1 Sample Zk+1 ∼ N (0, Id ) and set Yk+1 = O(Xk , h).
-.2 Set

Xk+1 =
{

Yk+1 with probability αh(Xk ,Yk+1) ,
Xk with probability 1− αh(Xk ,Yk+1) .

where

αh(x , y ) = 1 ∧
π(y )
π(x)

qh(y , x)
qh(x , y )

.
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Geometric ergodicity in Wasserstein distance and application I Application to the EI-MALA

Geometric convergence of the EI-MALA (I)

- Denote by ‖·‖Q the norm on Rd associated with the positive definite matrix
Q.

- Using the previous Theorem, we establish the geometric convergence of
the EI-MALA algorithm when π is given by π(x) ∝ e−(1/2)xT Qx− (x)− (x),
where satisfies with the following assumptions.

M1
1. The function belongs to C1(Rd ), is convex and there exists C such that

for all x , y ∈ Rd ,
∥∥Q−1(∇ (x)−∇ (y ))

∥∥
Q
≤ C ‖x − y‖Q .

2. The function belongs to C1(Rd ) and there exists C such that for all
x , y ∈ Rd ,

∥∥Q−1(∇ (x)−∇ (y ))
∥∥

Q
≤ C ‖x − y‖Q .
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Geometric ergodicity in Wasserstein distance and application I Application to the EI-MALA

Geometric convergence of the EI-MALA (I)

We make the following second assumption, which in essence imposes that
the acceptance probability is bounded from below by a positive constant.

M2 There exists h` ∈ (0, 2) such that for all h ∈ (0, h`] there exists three
positive real numbers ah,Rh and rh such that for all x ∈ Rd , ‖x‖Q ≥ Rh,

inf {αh(x , z), z ∈ BQ (Oh(x , 0), rh)} > ah .

Theorem
Assume M1, M2 and let h ∈

(
0, h` ∧ (4/(C2 + 1))

)
. Then, there exist a

distance ` on Rd , ρEI-MALA ∈ (0, 1) such that for all x ∈ Rd and n ∈ N∗

W`(Pn(x , ·), π) ≤ Cρn {V (x) + V (y )} ,

with V (x) = 1 ∨ ‖x‖Q .
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Geometric ergodicity in Wasserstein distance and application I Application to the EI-MALA

Calculation of the coefficient contraction in a simple case

- To illustrate our bounds, assume that ≡ 0 and that is bounded on Rd

and gradient Lipschitz.

- It is easily checked that M1 and M2 are satisfied.

- We can compute the dependence of the contraction coefficient in function
of the dimension, and see that this dependence is polynomial.

2.50 2.55 2.60 2.65 2.70
logHlogHdLL

- 265

- 260

- 255

- 250

- 245

- 240

logH-logHΡLL

FIGURE: Evolution of the rate of convergence ρEI-MALA in function of the dimension d .
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Geometric ergodicity in Wasserstein distance and application I Application to the EI-MALA

Numerical illustrations (I)

We have considered an ill-conditioned Bayesian linear inverse problem.

- It is assumed that the observation y ∈ Rp is given by

y = Ax + G

with G ∼ N (0, Ip),A ∈ Rp×d , and we want to learn x .

- In this problem, the dimension d can be very large and p � d .

- The prior distribution πX of x is given to be a small pertubation of a
exponential power distribution (see [Box and Tiao ,1992]) :

πX (x) ∝ exp
(
−λ1(xT x + δ)β − (λ2/2)(xT x)

)
,

with β ∈ (1/2, 1), λ1, λ2, δ ∈ R∗+ .
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Geometric ergodicity in Wasserstein distance and application I Application to the EI-MALA

Numerical illustrations (II)

- In this setting, the posterior distribution π is proportional to exp(−U) on Rd ,
where = 0 and the potential U is on the form

U(x) = (1/2)xT Qx + (x) with Q � 0 ,

where
Q = AT A/2 + λ2 Id and (x) = λ1(xT x + δ)β − 〈y ,Ax〉 .

- We can prove that π satisfies M1 and M2.
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Geometric ergodicity in Wasserstein distance and application I Application to the EI-MALA

Numerical illustrations (II)

: d = 100

: d = 500

: d = 1000

FIGURE: Trace plot and auto-correlation in function of the dimension on 10000
iterations with a 10000 burn-in iterations .

page 47 A. Durmus Geometric ergodicity in Wasserstein distance



Geometric ergodicity in Wasserstein distance and application I Application to the EI-MALA

The End

Thank you for your attention !
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